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Abstract 
 
A Hidden Markov Model (HMM) Toolbox within the 
Matlab environment is presented. In this toolbox, the 
conventional techniques for the continuous and discrete 
HMM are developed for the training as well as for the 
test phases. The ability to make different groups of 
components for the vector pattern is provided. Multi-
labeling techniques for the discrete HMM is also 
provided. The toolbox includes procedures suitable for 
the classical applications based on the HMM, as pattern 
recognition, speech recognition and DNA sequence 
analysis. 
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1. Introduction 
 
A Hidden Markov Model (HMM) is a type of stochastic 
model appropriate for non stationary stochastic 
sequences, with statistical properties that undergo 
distinct random transitions among a set of different 
stationary processes. In other words, the HMM models 
a sequence of observations as a piecewise stationary 
process. Over the past years, Hidden Markov Models 
have been widely applied in several models like pattern 
[1, 2], pathologies [3] or speech recognition [4, 5], and 
DNA sequence analysis [6, 7]. The HMMs are suitable 
for the classification from one or two dimensional 
signals and can be used when the information is 
incomplete or uncertain.  
  
 To use a HMM, we need a training phase and a test 
phase. For the training stage, we usually work with the 
Baum-Welch algorithm to estimate the parameters (π, 
A, B) for the HMM [8, 9]. This method is based on the 
maximum likelihood criterion.  
  
In addition to the Baum-Welch algorithm, it is 
necessary to estimate the Alfa and Beta matrices thanks 
to the forward and backward procedures. To compute 
the most probable state sequence, the Viterbi algorithm 
is the most suitable. 
  
 In order to apply the HMM techniques, the authors 
have developed a HMM toolbox called gpdsHMM in 

the Matlab environment. Several toolbox for the HMM 
already exist [10]. This work was carried out in order to 
offer a friendlier tool through didactics and graphics 
examples. This toolbox also contains two new concepts 
developed recently in the literature: the multi-labeling 
and the gathering methods which, when used in suitable 
conditions, improve significantly the results obtained 
with the HMM [11]. 
 
 In section 2, we introduce the classical Hidden 
Markov Models. Section 3 is an introduction to the key 
points of the HMM toolbox, and the conclusions of this 
paper are presented in section 4. 
 

2. Basic HMM 
 
A HMM model is basically a stochastic finite state 
automaton, which generates an observation string, that 
is, the sequence of observation vectors, O=O1 ,…, Ot ,… 
,OT. Thus, a HMM model consists of a number of N 
states S={Si} and of the observation string produced as 
a result of emitting a vector Ot for each successive 
transitions from one state Si to a state Sj. Ot is d-
dimension and in the discrete case takes its values in a 
library of M symbols. The state transition probability 
distribution between state Si to Sj is A={aij}, and the 
observation probability distribution of emitting any 
vector Ot at state Sj is given by B={bj(Ot)}. The 
probability distribution of initial state is Π={πi}. 

 
 aij= )( 1 ikjk SqSqP ==+
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 Then, given a observation sequence O, and a HMM 
model λ=(A, B, Π), we can compute P(O | λ) the 
probability of the observed sequence by means of the 
forward-backward procedure [12]. Concisely, the 
forward variable is defined as the probability of the 
partial observation sequence O1 , O2 ,…,Ot (until time t) 
and state Si at time t, with the model λ, as αt(i). And the 
backward variable is defined as the probability of the 
partial observation sequence form t+1 to the end, given 
state Si at time t and the model λ, as βt(i). The 
probability of the observation sequence is calculated as: 
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and the probability of being in state Si at time t, given 
the observation sequence O, and the model λ, as: 
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 The ergodic or fully connected HMM is a HMM with 
all states linked all together (every state can be reached 
from any state). The left-right (also called Bakis) is a 
HMM with the matrix transition defined as: 

ijifaij <= 0        (6a) 
∆+>= ijifaij 0     (6b) 

 

 
Figure 1. A bakis (or left-right) HMM 
 
 To calculate the HMM model for a given class, we 
need a lot of samples from this class. The characteristics 
for each sample are then extracted and stored in a 
parameter vector sequence xt. The xt is mapped to the 
equivalent Ot.  In the continuous HMM (CHMM), the 
probability distribution functions are a mixture 
multivariate of Gaussians and so xt=Ot. In the discrete 
HMM (DHMM), the parameters stored in xt are 
quantified and assigned to a label (also called code 
word) kv , and so Ot is equal to the sequence of the 

index corresponding to kv in the codebook. We adjust 
the model parameter λ=(A,B,Π) to maximize the 
probability of the observation sequence. Consequently, 
given W classes to recognize, we need to train λW for 
w=1...W HMM, one for each class, with the data set 
corresponding to the class w. We accomplish the above 
task thanks to the iterative Baum-Welch method, which 
is equivalent to the EM (expectation-modification) 
procedure.  

 
 The Baum-Welch method, developed in this toolbox, 
works as follows: 
1. Estimate an initial HMM model as λ=(A,B,Π). 
2. Given λ and the observation sequence O, we 

calculate a new model ),,( Π= BAλ  such as  
)()( λλ OO PP > . 
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λ instead of λ and go to step 1. 
  In the discrete HMM case, a vector quantizer (VQ) 
is required to map each continuous observation vector 
into a discrete codebook index. The formulas of Baum-
Welch method used in this toolbox to estimate the 
model λ=(A,B, Π) (step 2) are the following [12]: 
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 Thus, it is also important to compute the forward and 
backward procedures. In the CHMM, the Baum-Welch 
algorithm estimates the means and variances for the 
mixture of Gaussians [12]. 

∑ ∑

∑

= =

−

== T

t

M

k
t

T

t
t

jk

kj

kj
c

1 1

1

1

),(

),(

γ

γ
   (11a) 

∑

∑

=

−

=

•
= T

t
t

T

t
tt

jk

kj

kj

1

1

1

),(

),(

γ

γ
µ

O
  (11b) 

( )( )

∑

∑

=

−

=

−−•
= T

t
t

jktjkt

T

t
t

jk

kj

kj
U

1

'
1

1

),(

),(

γ

µµγ OO



















ℵ

ℵ



















=

∑∑
==

),,(

),,(

)()(

)()(),(

11
jmjmt

M

m

r
jm

jmjmtjk

tt

N

i

tt
t

c

c

jj

jjkj
UµO

UµO

βα

βαγ     (11c) 

 The Viterbi algorithm can be used to obtain the 
estimation of the most probable state sequence. Once all 
the HMMs Λ=(λ1 ...λW) are correctly trained, to classify 
a sequence for the observation O, Pw=P(O|λW) is 
calculated for all the λW. The unknown observation O is 
then classified by the process: 
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And so, w* is the optimum class for the observation O. 
  
 The initialization and stop criteria must be chosen 
adequately for the HMM. It directly interacts on the 
relevancy of the HMM [13].  Equiprobable and equal 
occupancy methods for the initial models are provided 
as well as iteration and rate of the error for the stop 
criterion. 
 

3. gpdsHMM toolbox functionality 
 
In this first version of the gpdsHMM, our goal is to 
propose a toolbox which contains the most usual 
functions for the HMM development. Both discrete 
HMM and continuous HMM were developed. We 
propose, in particular, a function to migrate from a 
DHMM to a CHMM and so to predict the initials 
parameters for the mixture of Gaussians. The generals 
Bakis (or left-right) and ergodic models are proposed. A 
multi-labeling method (for the DHMM) is also 
provided. The authors wished to develop some classical 
and useful examples in order to make this tool as 
didactic as possible. The functions for the CHMM use 
the netlab utility available from: 



http://www.ncrg.aston.ac.uk/netlab/ 
A freely distributed version of the gpdsHMM toolbox is 
available from: 
http://www.gpds.ulpgc.es/download/index.htm  
This toolbox is distributed as binary (dll files) and 
source code format. For a wide promotion, we ask the 
users to make a reference to this paper. For any remarks 
about this toolbox, do not hesitate to contact the authors 
sending an e-mail to: gpds@gi.ulpgc.es 
 
 In addition to the classical techniques for the HMM, 
the authors have developed the multi-labeling and the 
gathering methods and proposed several functions to 
facilitate the use of the HMM. For further information 
about those functions, please refer to the appendix. 
 
Multi-labeling 

 
In the discrete Hidden Markov Model approach, the 
conventional VQ technique is applied. In our toolbox, 
the library of labels (also called codebook) is calculated 
from the training database thanks to the k-mean or the 
LBG algorithms. In our toolbox, for each incoming 
vector the quantifier performs a hard decision about 
which of its code word is the best match, and so the 
information about how the incoming vector matches 
other code words is discarded. Because of the discrete 
quantification variability, the vector of parameters can 
be displaced in such a way that this displacement is a 
potential source of misrecognition. 
  
Unlike the conventional VQ, multi-labeling makes a 
soft decision about which code word is the closest to the 
input vector, generating an output vector whose 
components indicate the relative closeness of each code 
word to the input [11]. 
  
So, the multi-labeling codebook used in this toolbox 
maps the input vector xt into an observable vector 
Ot={w(xt,vk)}k=1,…,M, whose components are calculated 
with: 
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These components are positive, their sum is 1. Thus, 
this toolbox provides a lineal combination of code 
words vk in order to improve the representations for the 
xt. Under the standard DHMM approach, w(xt,vk) would 
take value 1 for the code word with the best match and 
value 0 for the rest. For the multi-labeling, the toolbox 
enables to use the C closest labels with C<M (number 
of symbols) weighted with the w(xt,vk.) calculated in 
(13) and re-scaled in order to have the sum equal to 1. 
The probability of an observable vector bj(Ot) is given 
by: 
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With respect to Baum-Welch estimation formulas for 
the transition probabilities aij (formula 8) and the initial 
state probabilities πi (formula 7) are generalized in the 
same manner. Regarding the estimation of bj(vk), the 

better recognition scores were obtained just using the 
next heuristic estimation formula: 
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 Although the above equation does not guarantee the 
convergence of the training process, in practice its use 
decrease the required number of iterations.  
Furthermore, to work out the observable vector Ot, 
multi-labeling can be simplified using, only the C most 
significant values of w(xt,vk) for each xt (C labels), 
where C is lower than the codebook size M. The 
corresponding improvement for the recognition rate 
makes the multi-labeling Hidden Markov Model 
(MLHMM) approach extremely efficient. The 
MLHMM approach is closely related to the semi 
continuous approach. 
 
Gathering 
 
The gathering is the fact to group together different 
types of characteristics stored in a vector pattern. 
Instead of gathering all the parameters in one HMM, the 
gathering builds one HMM by group of parameters. The 
input xt of d-dimension is now described as a group of 
vector of R characteristics with the sum of the 
dimension for each characteristic d(r) equal to d. 
The following variables described as “yr” stand for the 
variable “y” of the characteristic “r”. 
In the continuous case, where Ot=xt, bj(Ot) is calculated 
as: 
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In the discrete case, we calculate a number of R 
vector quantifiers with code vectors Rr

Mk
r
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quantify each parameter r
tx  with its vector quantifier as 

follows: 
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 And the new estimation formula is:  
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 Finally, in the discrete case, it is possible to combine 
the gathering with the multi-labeling methods.  
 
 To evaluate the efficiency of the HMM, a function 
calculates, thanks to the results of the HMM, a matrix 
of confusion for each set of parameters. The matrix of 
confusion is a matrix built during the test phase.  It 
shows how and where the HMM fails. Thus, the 



recognition rate and the matrix of confusion give a good 
idea about the pertinence for the given set of parameters 
within the recognition task. 
 
 To have a more didactic approach of the HMM, 
various functions and examples have been developed. 
Those functions cover manipulating sequences, 
probabilities matrices (like the Alfa, Beta or Gamma 
matrices) and maximum likelihood. 
 

4. Conclusions 
 
In this paper, a brief description of the gpdsHMM 
toolbox for Matlab is presented. This HMM toolbox is 
designed in order to provide the multi-labeling and 
gathering functionality in a didactic tool. The authors 
would like to exchange, through this toolbox, their 
experience in this area. The toolbox is structured so that 
everyone can customize a new HMM and extend it to fit 
a wide field of applications or can use the examples as a 
base. 
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Figure 2: Block-diagram for a DHMM 
 

Appendix: 
 
The main change between the block-diagram for the 
DHMM (figure 2) and the CHMM, is the function 
“etiquetado” that is the quantification for the vector of 
characteristic. Those functions are more detailed on the 
web. 
 
Alfa: this function calculates the Alfa from the HMM 
defined with the matrix A, B and Pi. The Alfa is scaled 
to avoid the problem of the precision. 
AlfaBeta: this function calculates the Alfa and Beta 
from the HMM defined with the matrix A, B and Pi. 
The Alfa is scaled to avoid the problem of the precision. 
Baum: this function computes the Baum Welch 
algorithm in order to estimate the HMM parameters, 
(formulas 7, 8 and 9). 
DHMM_DEF: this script defines the parameters of the 
discrete HMM. The type of the HMM and the method 
to quantify the library are chosen. 
DHMM: this is a script to train and test the HMM.  
DHMM_MEN: this script is a small program that 
prints some messages to describe the computation of the 
HMM. 
Etiquetado: this function implements the multi-labeling 
for the discrete HMM. To do that, we use a clustering 
algorithm like the k-mean to quantify the library VQ. 
The multi-labeling enables to give various labels given 
a parameter. The possible labels are directly linked to 
the number of symbol by state, (formulas 16, 17, and 
18). 
formato_lectura_secuencial: this function splits the 
database to smaller files (located in the c:\temphmm 
directory) in order to decrease the HMM computational 
time and the memory requirement. 
genHmm: this function generates a HMM with N states 
and M symbols by state. 
gen_bib: this function computes a library for all the 
different models of parameters based on the training 
vectors. According to the set up made in the 
DHMM_DEF, the library is generated with a LBG 
algorithm or with a k-means algorithm. 
iniciaHMM: this function calculates the HMM optimal 
initial model for the Baum-Welch training. 

kMedias: this function computes a k-mean algorithm 
for the library VQ. 
prodBO: this function calculates the product of the 
probability to monitor a sequence O with the probability 
of the backward B distribution. 
ProbSec: this function estimates the log of the 
probability to monitor a sequence O given a HMM. We 
use the log to avoid numerical problem, formulas (4). 
Resulhmm: this function calculates the confusion 
matrix group by group according to the gathering made 
in the DHMM_DEF. 
ROC: this function analyses the results from the HMM. 
It particularly deals with the problem of false 
acceptance rate (FAR called here FMR false match rate) 
and false rejection rate (FRR called here FNMR false 
non match rate). 
Viterbi: this function calculates the sequence of the 
most probable states given the HMM and the sequence 
monitored O. We use the algorithm of Viterbi with the 
log for the numerical precision problems. 
 
 To implement the continuous HMM, this toolbox 
uses the functions from the netlab utility, as mentioned 
before (http://www.ncrg.aston.ac.uk/netlab/), and some 
of the functions described for the discrete HMM. 
Moreover, the following functions were designed to 
manage a CHMM. 
 
AlfaBetac: this function is equivalent to the AlfaBeta 
function used for the DHMM. 
Baumc: it is equal to the function Baum but used for a 
CHMM instead of a DHMM, (formulas 11a, 11b, 11c). 
CHMM_DEF: this function defines the parameters for 
the CHMM and in particular the mixture of Gaussians 
used in this case. 
CHMM: this is a script to train and test the HMM. 
CHMM_MEN: it is equal than the DHMM_MEN.  
DHMM2CHMM: this function generates a CHMM 
from a DHMM. 
GencHMM: it is equivalent to the genHMM but used 
for a CHMM. 
IniciacHMM: it is equivalent to the genHMM but used 
for a CHMM. 
Probsimb: this function calculates the probability for a 
vector O to be generated from any state Si. 
Viterbic: Function to calculate the most probable state 
sequence given a CHMM and a sequence monitored O. 

 
 

 
DHMM 

 
 
 
 

Training 

Test 

DHMM DEF DHMM Men Generation of the Library 

Gen Bib KMedias

GenHMM

ProbBO

Viterbi

ProbSec 

IniciaHMM

Baum

Etiquetado

Database 
 
 

DB for the 
training. 

 
Group of 

parameters 

DB for the 
test 

ResultHMM : Thanks to the files of result, it creates the Matrix of confusion group by group. 


