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1. Introduction: 
 

A Hidden Markov Model (HMM) is a type of stochastic model appropriate 
for non stationary stochastic sequences, with statistical properties that undergo 
distinct random transitions among a set of different stationary processes. In 
other words, the HMM models a sequence of observations as a piecewise 
stationary process. Over the past years, Hidden Markov Models have been 
widely applied in several models like pattern [1, 2], pathologies [3] or speech 
recognition [4, 5], and DNA sequence analysis [6, 7]. The HMMs are suitable for 
the classification from one or two dimensional signals and can be used when 
the information is incomplete or uncertain.  
 

To use a HMM, we need a training phase and a test phase. For the 
training stage, we usually work with the Baum-Welch algorithm to estimate the 
parameters (π, A, B) for the HMM [8, 9]. This method is based on the maximum 
likelihood criterion.  
   

In addition to the Baum-Welch algorithm, it is necessary to estimate the 
Alfa and Beta matrices thanks to the forward and backward procedures. To 
compute the most probable state sequence, the Viterbi algorithm is the most 
suitable. 
 
 In order to apply the HMM techniques, the authors have developed a 
HMM toolbox called gpdsHMM in the Matlab environment. Several toolbox for 
the HMM already exist [10]. This work was carried out in order to offer a 
friendlier tool through didactics and graphics examples. This toolbox also 
contains two new concepts developed recently in the literature: the multi-
labeling and the gathering methods (or multi-parameter method) which, when 
used in suitable conditions, improve significantly the results obtained with the 
HMM [11]. 
 

This HMM toolbox is implemented to enable a quick and easy use of a 
discrete HMM. We propose in 2 a basic review of the theory. The part three 
gives a useful description for every function provided within this toolbox. And, in 
part 4, we tend to propose a continuous HMM. At the end of this file, you can 
find three useful examples based on the discrete HMM, the continuous HMM 
and one using the function DHMM2CHMM. 

 
Please read the part 7 of this toolbox to make this toolbox work in the 

Matlab © environment. 
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2. HMM theory and example 
 
 A hidden Markov Model (HMM) is a type of stochastic model appropriate 
for no stationary stochastic sequences, with statistical properties that undergo 
distinct random transitions among a set of different stationary processes. In 
other words, the HMM models a sequence of observations like a piecewise 
stationary process. Such models have been used extensively in speech 
recognition, handwriting recognition, texture classification, blind equalization, 
etc. In this part, we will focus on the discrete HMM. The HMM theory in the case 
of the continuous is explained in the part 4. 
  

2.1. Elements of a HMM 
  
 A HMM model is basically a stochastic finite state automaton, which 
generates an observation string, that is, the sequence of observation vectors, 
O=O1 , O2 ,… ,OT . Thus, a HMM model consists of a number of N states S={Si} 
and the observations string produced as a result of emitting a vector Ot each 
successive transitions from one state Si to another state Sj. The state transition 
probability distribution between state Si and Sj is A={aij}, and the observation 
probability distribution of emitting any vector Ot at state Sj is given by B={bj(Ot)}. 
The probability to be in the state i at the initial instant is Pi={πi  }.   
 

aij= )( 1 ikjk SqSqP ==+     (1) 
bj(Ot)= )( jtt SqP =O     (2) 
πi  = )( 0 iSqP =       (3) 

      
Then, given an observation sequence O, and a HMM model λ=(A, B, Π), 

we can compute P(O | λ) the probability of the observed sequence thanks to the 
forward-backward procedure. Concisely, defining the forward variable as the 
probability of the partial observation sequence O1, O2, … ,Ot (until time t) and 
state Si at time t, given the model λ, as αt(i). And defining the backward variable 
as the probability of the partial observation sequence form t+1 to the end, given 
state Si at time t and the model λ,  as βt(i). Both αt(i) and βt(i) are worked out 
with the forward-backward procedure.  

Forward: 
 

α1(i)= πI  *bi(O1)   (4) 
αt+1(j)=[Σi αt (i) * aij] bj(Ot+1 ) (5) 

 
Backward: 
 

βT(i)=aiN    (6) 
βt-1(i)= [Σj βt(j) * aji] bi(Ot-1 )  (7) 

 
We can calculate the probability of the observations sequence as: 

∑ ∑
= =

==
N

i

N

i
Ttt iiiP

1 1
)()()()( αβαλO   (8) 
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And the probability of being in state Si at time t, given an observations 
sequence O, and the model λ, as: 

)(
)()(

)(
λ

βα
γ

OP
ii

i tt
t =  

The probability of being at state Si at time t and state Sj at time t+1 is: 

)(

)()()(
),( 11

λ

βα
ξ

O
O

P

ibai
ji ttjijt

t
++=  

 

2.2. Problems of the HMM 
 

In the case in which we wish to use an HMM with a discrete observation 
density, rather than the continuous observation vectors of parameters x1 , x2 , 
…., xT , a vector quantifier (VQ) is required to map each continuous observation 
vector into a discrete codebook index. Let the code words of the codebook be 
{vk}k=1,…,M where M is the codebook size. Then, the vector Ot of the observation 
sequence O1, O2, …, OT  is obtained as follows: 

Ot=k, with k is the index of the code word vk iff d(xt,vk)<d(xt,vm) for all m≠k 
where d(xt,vk) is the distance between xt and vk. As the number of possible 
emitted vectors is M, the distribution of observation vector in each state bj(Ot) 
used in forward backward procedure and Viterbi algorithm is defined by bj(vk) 
being bj(vk) the probability of code vector vk at each state. 
 
To calculate the vector quantifier (VQ also called library of symbols), we have 
implemented two algorithms. The k-mean and the LBG algorithms create a 
library of M elements thanks to the training set: 

 
VQ codebook design: 

• We want to design the codebook for each parameter in each class. 
• We try to find the codebook size and vectors in order to have the overall 

distortion minimized. 
 

• With fpVQ the training data set and s a vector from fpVQ, R the centroids 
of the library with r a vector of R (in the function is an element from 
biblio). And so, d(s, r)= ||s-r||^2 
 
LBG (Linde, Buzo and Gray) algorithm: 
1. initialization of the library with the centroid r calculated with the 

vectors fpVQ from this class 
2. Define the vectors r1 = r + ε, r2 = r- ε 
3. The closest vectors from r1 (r2) are s1 (s2) 
4. Search for the centroids from s1 and s2 
5. Make the steps 3-4 several times. UmbralVQ and maxiterVQ are the 

conditions to stop. 
Make 1 to 5 up to obtain the desired numbers or this class 
 
 The algorithm k-mean is used to compute the N centroids in each 
library associated to each parameter in each class. The k-mean problem is to 
minimize the mean square error (MSE).The idea, in this algorithm, is to build the 
N centroids adding N new training vectors by step. We update the centroids 
step by step. 
 



 8

1.  The N first training vectors are the centoids(0). 
2.  Each vector added is assigned to the closest centroid(t) and the 

centroids(t+1) are recalculated with the new vectors added 
3. The algorithm is terminated when centroid(t)= centroid(t+1) 
   (in our case it will be terminated when  
  Σ ||centroid(t)-centroid(t+1)|| < threshold  
  or when the iteration number > maxiter) 

 

2.2.1. Training 
 
 But our problem is not to work out the probability of a observation 
sequence but to model a signature described by a continuous observation 
vectors of signature parameter x1 , x2 , …., xT  via an HMM model. To calculate 
the HMM model of a signature, we associate the observations sequence with 
the signatures parameters sequence, that is Ot=xt, and to adjust the model 
parameter λ=(A,B,Π) to maximize the probability of the observation sequence. 
The probability maximization is done for the parameters sequences of all the 
signatures repetitions. 

We accomplish the above task thanks to the iterative Baum-Welch 
methods, which is equivalent to the EM (expectation-modification) procedure.  

 
 The Baum-Welch method works as follow: 

 
1. Estimate an initial HMM model as λ= (A, B, Π). 
2. Given λ and the observation sequence O, we calculate a new model 

),,( Π= BAλ  such that )()( λλ OO PP > . 

3. If the improvement threshold
P

PP
<

−

)(

)()(

λ

λλ

O

OO
, then stop. 

Put λ in place of λ and go to step 1. 
 

In this case, discrete HMM, the formulas of Baum-Welch method used in 
this work to estimate the model λ=(A,B, Π) (step 2) are the next: 

 

)(1 ii γπ =    

∑

∑

=

−

== T

t
t

T

t
t

ij
i

ji
a

1

1

1

)(

),(

γ

ξ

   
∑

∑

=

=
=

= T

t
t

T

ts
t

t

kj

i

i

b kt

1

..
1

)(

)(

)(
γ

γ

vOv  

 Multi-labeling 
 

In the discrete hidden Markov model (DHMM) approach, the conventional VQ 
technique is applied. For each incoming vector, the quantifier performs a hard 
decision about which of its code word is the best match, and so the information 
about how the incoming vector matches other code words is discarded. 
Because of the signature variability, the vector of parameters can be displaced 
in such a way that the displacement is a potential source of misrecognition. 
 Unlike the conventional VQ, multi-labeling makes a soft decision about 
which codeword is the closest to the input vector, generating an output vector 



 9

whose components indicate the relative closeness of each codeword to the 
input. 
 So, the multi-labeling codebook used in this work maps the input vector 
xt into an observable vector Ot={w(xt,vk)}k=1,…,C, whose components are 
calculated with 
 

∑
=

= C

m
mt

kt
kt

d

d
w

1

),(/1

),(/1
),(

vx

vx
vx  

These components are positive, their sum is 1. Thus, they provide a heuristic 
measure describing the likelihood that the input vector xt would be derived from 
the class represented by the codeword vk. Under the standard DHMM 
approach, w(xt,vk) would be taken value 1 for the code word with the best 
match and value 0 for the rest.  In this case, the probability of an observable 
vector bj(Ot) is given by 

∑
=

=
C

k
kjkttj bwb

1

)(),()( vvxO  

With respect to Baum-Welch reestimation formulas for the transition 
probabilities aij and the initial state probabilities πi are generalized in the same 
way. Regarding the reestimation of bj(vk), the better recognition scores were 
obtained just using the next heuristic reestimation formula 

∑

∑

=

== T

t
t

kt

T

t
t

kj

i

wi
b

1

1

)(

),()(
)(

γ

γ vx
v  

Although above equation does not guarantee the convergence of the training 
process, in practice its use decrease the required number of iterations.  
Furthermore, multi-labeling can be simplified using, to work out the observable 
vector Ot, only the L most significant values of w(xt,vk) for each xt (L labels), 
where L is lower than the codebook size C. The corresponding reductions in 
computational load make the multi-labeling Hidden Markov Model (MLHMM) 
approach extremely efficient. The MLHMMM approach is closely related to the 
Semi Continuous approach. 
 

 Multi-parameter Vector or Gathering 
 
The gathering is the fact to group together different types of characteristics 
stored in a vector pattern. Instead of gathering all the parameters in one HMM, 
the “gathering method” builds one HMM by group of parameters. The input xt of 
d-dimension is now described as a group of vector of R characteristics with the 
sum of the dimension for each characteristic d(r) equal to d. 
 
The parameter p dimensional vector xt can be a set of R parameters pr 
dimensional vector r

tx  linked together, that is ),...,,...,,( 21 R
t

r
tttt xxxxx = . The 

above described HMM algorithm will see all the parameters as a vector with just 
one p-dimensional parameter. To take into account each parameter in a 
isolated way, we propose to modify the calculation of the observation vector 
probability bj(Ot). The other formulas are unchanged. 
 
In the continuous case, where Ot=xt, bj(Ot) is calculated as 

∏
=

=
R

r

r
tjtj bb

1
)()( OO  being ),,()(

1

r
jm

r
jm

r
t

M

m

r
jm

r
tj cb UµOO ∑

=

ℵ=  
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In the discrete case, we calculate a number of R vector quantifiers with code 
vectors Rr

Crk
r
k

,...,2,1
,...,2,1}{ =

=v  , and quantify each parameter r
tx  with its vector 

quantifier as follows 
kmallforddiff r

m
r
t

r
k

r
t

r
k

r
t ≠<= ),(),( vxvxvO  

and 

∏
=

=
R

r

r
tjtj bb

1

)()( OO    being   )()( r
kj

r
tj bb vO =  

and the reestimation formula its 

∑

∑

=

=
=

=
T

t
t

T
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t

t
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kj
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b
r
k

r
t
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1
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)(

γ

γ

vOv  

Finally, in the multi-labeling case, to take into account each parameter is an 
isolated way; we mapped each input vector xt into an observable vector  
 )},(),...,,(),....,,({ 111 R

k
R
t

Rr
k

r
t

r
ktt www vxvxvxO =  where  

 

 

∑
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),(/1
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being the distribution probability worked out as 
 

 ∏ ∑∏
= ==

==
R

r

C
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))(),(()()( vvxOO  

and the reestimation formula 
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∑

=

==
T

t
t

r
k

r
t

r
T

t
t

r
kj

i

wi

b

1

1

)(

),()(

)(

γ

γ vx
v  

 

2.2.2. Classification 
 
 We create a HMM for each class and each group of parameters to be 
classified. Then, as mentioned-above, we train each HMM with its own training 
set. To train the HMM of the 1st class, we only use the training set of the first 
class, and so on for the second class up to the end. The Viterbi algorithm can 
be used to obtain the estimation of the most probable state sequence. Once all 
the HMMs Λ=(λ1 ...λW) are correctly trained, Pw=P(O|λW) is calculated for all the 
λW, in order to classify a sequence for the observation O. The unknown 
observation O is then classified by the process: 
 

Ww
pw w

≤≤
=
1

maxarg*   (12)            



 11

 
And so, w* is the optimum class for the observation O.  
  
 The initialization and stop criteria must be chosen adequately with the 
HMM. It directly interacts on the relevancy of the HMM [13].  Equi-probable and 
equal occupancy methods for the initial models are provided as well as iteration 
and rate of the error for the stop criterion. 
 

To evaluate the efficiency of the HMM, a function calculates, thanks to 
the results of the HMM, a matrix of confusion for each set of parameters. The 
matrix of confusion is a matrix built during the test phase. It shows how and 
where the HMM fails. Thus, the recognition rate and the matrix of confusion give 
a good idea about the pertinence for the given set of parameters within the 
recognition task.  

2.3. Types of HMM 
 
 There are different types of HMM. In our case, we will present the 
ergodic and the Bakis (also called left-right HMM) models. 
  

 

S2 

S5

S1 S4 

S3 

(b) 

 

 Illustration 2:1 illustration of 2 distinct types of HMM. (a) a 5 state left-
right HMM (b) a 5 state ergodic model. 

S2  S1  S4 S3 S5 

(a) 
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 The ergodic or fully connected HMM is a HMM with all states linked 
together (every state can be reached from every others states).  
 

0
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 The left-right (also called Bakis) is a HMM with the matrix transition 
defined as: 

ijifaij <= 0   and ∆+>= ijifaij 0  
 
For the particular case of a 5 state Bakis with ∆=2, we have the following 
transition matrix: 

 




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


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00
00
00

a
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aaa
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A   

 
There are many other HMM types, but with those two classical HMM, the 
toolbox provides the types of HMM most used. The left-right model is widely 
used in the problem of voice recognition for example and the ergodic can be 
used for nearly all problems as it is the more generic type of HMM. 
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3. Description of the DHMM part of the toolbox 
 

In this part, we describe the different functions developed in the toolbox 
in order to manage a discrete Hidden Markov Model. Firstly, the main 
functionalities are summarized for each function and then, we explain its use 
and the parameters to take into account. 
 
 

 
Illustration 3:1 Block diagram of the toolbox for a DHMM. 

 
Some of the functions described in this toolbox are only proposed as 

examples. In particular, the functions DHMM and DHMM_DEF must be adapted 
for your own HMM. See the examples provided to have further information 
about it. In the second part of this point, each function is described with the 
formats of the inputs and outputs parameters. 
 
 
Alfa: this function calculates the Alfa from the HMM defined with the matrix A, B 
and Pi. The Alfa is scaled to avoid the precision problem. 
AlfaBeta: this function calculates the Alfa and Beta from the HMM defined with 
the matrix A, B and Pi. The Alfa is scaled to avoid the problem of the precision. 

Generation of the Library 

 
 
 
 
 
 

DHMM 
 
 
 
 
 
 
 
 

Training 

 File    within  
    the       results 

Test 

 
DHMM_DEF 

 
DHMM_Men  

Gen_Bib 
 

KMedias 

 
GenHMM 

 
ProbBO 

 

 
Viterbi 

 

 
Probsec 

 
IniciaHMM 

Baum 

Etiquetado 

Database 
 
 

DB for the 
training. 

 
Group of 

the 
parameters 

 
DB for the 

test 

ResulHMM 
Matrix of confusion for all the groups of parameters gathered. 

AlfaBeta 
Formato_ 
lectura_ 

secuencial 
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Baum: this function computes the Baum Welch algorithm in order to estimate 
the HMM parameters. 
DHMM_DEF: this script defines the parameters of the discrete HMM. The type 
of the HMM and the method to quantify the library are chosen. 
DHMM: this is a script to train and test the HMM.  
DHMM_MEN: this script is a small program that prints some messages to 
describe the computation of the HMM. 
Etiquetado: this function implements the multi-labeling for the discrete HMM. 
To do that, we use a clustering algorithm like the k-mean to quantify the library 
VQ. Given a parameter, the multi-labeling allows to give it various labels. The 
possible labels are directly linked to the number of symbol by state. 
formato_lectura_secuencial: this function splits the database to smaller files 
(located in the c:\temphmm directory) in order to decrease the HMM 
computational time and the memory requirement. 
genHmm: this function generates a HMM with N states and M symbols by 
state. 
gen_bib: this function computes a library for all the different models of 
parameters based on the training vectors. According to the set up made in the 
DHMM_DEF, the library is generated with a LBG algorithm or with a k-means 
algorithm. 
iniciaHMM: this function calculates the HMM optimal initial model for the Baum-
Welch training. 
kMedias: this function computes a k-mean algorithm for the library VQ. 
prodBO: this function calculates the product of the probability to monitor a 
sequence O with the probability of the backward B distribution. 
ProbSec: this function estimates the log of the probability to monitor a 
sequence O given a HMM. We use the log to avoid numerical problem, (formula 
4). 
Resulhmm: this function calculates the confusion matrix group by group 
according to the gathering made in the DHMM_DEF. 
ROC: this function analyses the results from the HMM. It particularly deals with 
the problem of false acceptance rate (FAR called here FMR false match rate) 
and false rejection rate (FRR called here FNMR false non match rate). 
Viterbi: this function calculates the sequence of the most probable states given 
the HMM and the sequence monitored O. We use the algorithm of Viterbi with 
the log for numerical precision problems. 
 
 Each function is now described by alphabetic order. This description is 
focused on the inputs and outputs parameters. Please refer to the block 
diagram, to see how the functions interact together,  
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 Alfa 

 
This function calculates the alpha from the HMM defined with the matrix A, B 
and Pi. The alfa is scaled to avoid the precision problem. 
 function [alfa,c]=Alfa(A,B,Pi,O) 

 
Entry: A(N, N) is the transition probability matrix from a state I to a state k. 

 
B{Np}(N,M) is the distribution probability symbol matrix  for each 
parameter. 
B{ip}(i,k) is the probability to obtain the kth symbol when we are at 
state I for the set of parameter ip for this HMM (the HMM of a class 
and a group). 

 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start at state i. 
 
O is a matrix with the sequence monitored. 
 

Result: alfa is the forward probability matrix. 
 
alfa(i,t) when alfa is not scaled is the probability to observe the 
sequence O(1,:),….,O(t,:) for state i at the instant t. 
We have in particular P(O/(A, B, Pi))= sum(alfa(:,T)).  
 
When alfa is scaled, we have sum(alfa(:,t))=1. 
 
c(T,1) is the vector where we store the scale value for the instant t. 
We have c(T,1)= ones(T,1) if the alfa is not scaled.  
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 AlfaBeta 
 
This function calculates the alpha and beta from the HMM defined with the 
matrix A, B and Pi. The alfa and Beta are scaled to avoid the problem of the 
precision. 
 function [alfa,beta,c]=alfabeta(A,B,Pi,O) 

 
Entry: A(N, N) is the transition probability matrix from a state I to a state k. 

 
B{ip}(i,k) is the probability to obtain the kth symbol when we are at 
state I for the set of parameter ip for this HMM (the HMM of a class 
and a group). 

 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start in the state i. 
 
O is a matrix with the sequence monitored. 
 

Result: alfa is the forward probability matrix. 
alfa(i,t) when alfa is not scaled is the probability to observe the 
sequence O(1,:),….,O(t,:) for the state i at the instant t. 
We have in particular P(O/(A, B, Pi))= sum(alfa(:,T)).  
When alfa is scaled, we have sum(alfa(:,t))=1. 
 

 beta is the backward probability matrix. 
beta(i,t) when beta is not scaled is the probability to observe the 
sequence O(t+1,:),….,O(T,:) for the state i at the instant t. 
 
c(T,1) is the vector where we store the scale value for the instant t. 
We have c(T,1)= ones(T,1) if the alfa and beta are not scaled.  

 
We have the following relations on the alfa and beta: 
 Relations between alfa scaled and not scaled 
  h=cumprod(c); 
  alfa_scaled(:,t)= h(t)*alfa_no_scaled; 
 Relations between beta scaled and not scaled 
  g=cumprod(c(T:-1:1); 
  beta_scaled(:,t)=g(t)*beta_no_scaled(:,t); 
 
If alfa and beta are not scaled, the probability to observe O is (this product is 
independent of t): 
 alfa( :,t)’*beta( :,t) = sum (alfa(T,:)) 
 
If alfa and beta are scaled (it depends on t): 
 alfa(t,:)’*beta(t,:) = c(t)*sum (alfa(T,:)) 
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 Baum 

 
This function computes the Baum Welch algorithm in order to estimate the 
HMM parameters. 
function [A1,B1,Pi1,logPOs]=baum(A,B,Pi,lrep) 

 
A, B and Pi are the matrices of the HMM defined with the function genHMM for 
example. 

 
Entry: A(N, N) is the transition probability matrix from a state I to a state k. 

 
B{ip}(i,k) is the probability to obtain the kth symbol when we are at 
state I for the set of parameter ip for this HMM (the HMM of a class 
and a group). 

 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start in the state i. 
 
Lrep is a matrix with the size of the sequence of labels monitored for 
this HMM (we have the sequence of labels for all the parameters of 
the HMM’s group and class). It contains all the repetitions of the 
training set for this HMM (the HMM of a class and a group). 
 

Result:  A1(N, N) is the transition probability matrix updated with the Baum 
Welch algorithm. 
B1(N, N) is the distribution probability symbol matrix updated with the 
Baum Welch algorithm. 
Pi(N,1) is the distribution probability for the initial state updated. 
logPOs(nr,1): probability that the HMM with the parameters (A,B,Pi) 
generates each realisation of the labels entries of the subroutine.  
 

This function calls the alfabeta function. The sequences of labels are loaded 
from the files: c:\temphmm\vpl.tmp during the algorithm. 
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 DHMM_DEF  

 
This function is described only as an example to set up the HMM. 
 
function dhmm_def(fhmm) 
 
This function defines the parameters of the discrete HMM. We can split the 
parameters in 4 groups: 
 
Entry: fhmm is the HMM´s file name. 
 

 vDB defines the database: 
vDB=[' nc ng agrup Np']; 
where nc is the number of class, ng is the number of group, 
agrup defines how to gather the parameters together. For example, if 
we have two parameters for the first group. If we fix agrup{1}=[1 3]; 
we create only one library for this group of parameter. If we fix 
agrup{1}=[1 2 3]; we create two libraries (one for the first parameter 
and one for the second parameter of the group). And so on, with 
three parameters, for agrup{1}=[1 3 4]; we create a library for the first 
and second parameters and one for the third parameters. 
 
NP is a vector with the number of each group of parameter. 

We have the following relations: 
[nc,ng]=size(vl); 
agrup{ig}=[1 .... size(vl{1,ig}{1},2)+1]; 
Np(ig)=length(agrup{ig})-1; 
 

 vHMM defines the HMM : 
 vHMM=[' BAKIS salto maxiter umbral maxitermi TOPN Ne Ns A B Pi']; 

if Bakis = 1 implements a Bakis HMM (also called left-right), else an 
ergodic HMM is defined  
Salto is the maximum path authorized in the Bakis HMM from a state 
to another. 
Maxiter is the maximum iteration number in the Bakis HMM (condition 
to stop the algorithm) 
Umbral is the threshold condition to stop the HMM (the error is 
calculated with the maximum likelihood criterion)  
TOPN is the number of labels to take into account for the multi-
labeling during the training phase. For example, 
TOPN{ig}=1.*ones(Np(ig),1); create one label for all the parameters of 
all the groups. If we want to put two labels 
TOPN{ig}=2.*ones(Np(ig),1), we have to change topntest when we 
change the number of labels too. We can also set a number of labels 
different for each set of parameters and group. For instance: 
TOPN{4}=4.*ones(Np(4),1); and TOPN{ig}=1.*ones(Np(ig),1); for 
ig>1. By experience, the results are quite good fixing only one label 
by parameter. 
 
Ne(nc,ng): is the number of states of the HMM for each class and 
group. We could fix a different number of states for each group ig and 
each class ic. For example, Ne(1,1) =10 and Ne(2,2)=20…In this 
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case we have 10 states for the HMM of the first class and first group 
and 20 for the HMM of the second class and second group. 
Ns{ng}(Np): It is the number of symbols for each parameter of each 
group. We could fix a number of symbols different for each group ig 
and parameter of the group ip. 
A, B and Pi are the matrices of the HMM (it will be calculated thanks 
to the HMM) but must de defined here.  
cell array A=cell(nc,ng); 
cell array B=cell(nc,ng); 
cell array Pi=cell(nc,ng); 
 
Salhmm is a matrix used to store the probabilities values 

We have the following relations: 
TOPN=cell(ng,1); 

 
  vQ is the matrix parameter for the library : 

vVQ=[' LBG dpztoLBG maxiterVQ umbralVQ men biblio']; 
where LBG is the choice of the algorithm to compile the library 
LBG = 1 the algorithm is LBG, in the other case we choose kMedias 
dptzoLBG percentage maximum for the distance of the code vector in 
the algorithm LBG (see gen_bib)  
maxiterVQ is the maximum number of iteration to compute the library 
(condition to stop the algorithm) 
umbralVQ is the threshold condition to stop the library computation 
(condition to stop the algorithm) 
men=1 or 0 if men =1 the library generates message else no. 
biblio is a matrix parameter for the library computation (we define it 
here but calculate in the gen_bib function) 
 

  vTEST is the matrix parameter for the test : 
vTEST=[' TOPNtest salhmm']; 
where TOPNtest is the number of labels to take into account for the 
multi-labeling during the test phase (this works as the TOPN of the 
training). 
Salhmm is a matrix used to store the probabilities values 

We have the following relations: 
TOPNtest=cell(ng,1); 
salhmm=cell(nc,ng); 
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 DHMM 

 
 
This program calls the different functions to design the HMMs (one for each 
class and for each group) designed in the function DHMM_DEF. It is here as 
example to make the HMM work. 
 
function dhmm(fhmm,fptrain,fptest,fhmmout) 
 
Entry:  fhmm is the name of the HMMs set up in the function DHMM_DEF 
         
  fptrain is the name of the file containing the sequences of parameters to 

train each HMM  with its own group of training set. In each repetition, we 
find a sequence of parameters for a class and a group. 

 
         fptest is the name of the file containing the sequences of parameters to 

test each HMM with its own group of test set. In each repetition, we find a 
sequence of parameters for a class and a group. 

 
         fsalhmm: Name of the file containing the outputs of each classifier for 

each sample of the database of the test in a cell array:  
 salhmm{class, group}(repetition). 
        
  Variables defined in the fhmm file with the function DHMM_DEF 
 
       nc: number of classes. 
      ng: number of groups. 
       agrup{ng}: the way to gather the parameters together. 
       Np(ng): number of parameters by group. 
   Ne(nc,ng): Number of states of the HMM for each   
   class and group. . We could fix a number of states   
   different for each group ng and each class. For example,  
   Ne(1,1) =10 and Ne(2,2)=20…In this case we have 10  
   states for the HMM of the first class and first group and 20  
   for the HMM of the second class and second group. 
   Ns{ng}(Np): The number of symbols for each    
   parameter of each group. We could fix a number of symbol  
   different for each group ng and parameter of the group Np. 
         TOPN{ng}(Np): Number of labels for the multi-labeling for  
   each parameter of each group. 
   Maxitermi is the maximum iteration for the initial model 
   umbral: Umbral is the threshold condition to stop the HMM  
   (the error is calculated with the maximum likelihood   
   criterion) 
   maxiter: Maxiter is the maximum iteration number in the  
   Bakis HMM (condition to stop the algorithm) 
        salto: Salto is the maximum path authorized in the Bakis  
   HMM from a state to another. 
   BAKIS: if Bakis = 1 implements a Bakis HMM (also called  
   left-right), else an ergodic HMM is defined 
 
The variables of the HMM: 
    cell array A=cell(nc,ng); 
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    cell array B=cell(nc,ng); 
    cell array Pi=cell(nc,ng); 
     
          
       
The libraries are calculated thanks to the set up made in the DHMM_DEF. We  
  calculate the library for each group and class. The number of  
  centroids is equal to the number of symbols.  We store the library  
  in the cell array biblio: 
               biblio{group} 
             
 maxiterVQ is the maximum number of iteration to compute the library 
 (condition to stop the algorithm) 
           umbralVQ is the threshold condition to stop the library computation 
 (condition to stop the algorithm) 
          men=1 or 0 if men =1 the library generates message else no. 
           LBG = 1 the algorithm is LBG, in the other case we choose kMedias 
           dptzoLBG percentage maximum for the distance of the code vector in the 
 algorithm LBG (see gen_bib)  
    
           TOPNtest is the number of labels to take into account for the multi-
 labeling during the test phase 
           Salhmm is a matrix used to store the probabilities values 
 
NOTA: use the scripts dhmm_def, and dhmm_men. 
NOTA: use the functions: etiquetado, iniciaHMM, genhmm, alfabeta, alfa, 
 probsec, viterbi, baum, gen_bib and kmedias  
NOTA: if fptrain=” “ we only realize the test 
NOTA: if fptest=” “ we only make the training 
 



 22

 
 DHMM_MEN 

 
This script is a small program that prints some messages to describe the computation of 
the HMM.
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 Etiquetado 

 
This function implements, for the discrete HMM, the multi-labeling. To do that, 
we use a clustering algorithm like the k-mean to quantify the library VQ (for 
further information on the k-mean algorithm see kmedia function). Given a 
parameter, the multi-labeling gives various labels (this defined for each 
parameter of each group in the TOPN). The number of labels is defined in the 
TOPN for each parameter of each group. It can not be bigger than the number 
of symbols by state. 
 
This function, in particular, labels all the data set given a class and a group. 
function pl=etiquetado(vl,agrup,Ns,biblio,TOPN) 
 
Entry: v1 is the database. 
 agrup defines how to gather the parameters together 
 Ns number of symbols by state 
 Biblio is the matrix of the library given this class and this group. 

TOPN number of labels to take into account for the multi-labeling 
during the training phase 
  

Result: p1 is a matrix where we store the labels for all the vectors. 
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 formato_lectura_secuencial 

 
This function splits the database to smaller files in order to decrease the HMM 
computational time.  
function [lrep,lgrupo]=formato_lectura_secuencial(fptrain,fplecsec,agrup,fpVQ) 
 
Entry: fptrain is a file containing the full database. 
 fplecsec: the database split and stored at the direction 

c:\temphmm\fplecsec_cclase_ggrupo.mat  
 agrup: if we have agrup, we must prepare the training data set for VQ 

with a clustering algorithm (this is in particular the case for the multi-
labeling for DHMM). 

 fpVQ: is a file containing the training database for VQ. 
 
Result: lgrupo: is a vector containing the number vectors for every group. 
 Lrep: is a matrix with the length for each class, each group and 

repetition. lrep{ic,ig}(ir) contains the length of the icth class, igth group 
and irth vector (also called repetition). 
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 genHmm 

 
This function generates a HMM with N states and M symbols by state. 
function [A,B,Pi]=genhmm(N,M,Np,BAKIS,salto); 
   
Entry: N is the state number 

M is the symbols number by state 
Np is the number of parameters for each symbol 
if Bakis = 1 implements a Bakis HMM (also called left-right),else an 
ergodic HMM is defined  
Salto is the maximum path authorized in the Bakis HMM from a state 
to another. 

 
Result: A, B and Pi are the matrices of the HMM defined within this function. 

 
A(N, N) is the transition probability matrix with the following 
conditions: 
 Σj Aij =1 (sum(A(i,:)=1)) 
 Aij ≥ 0  (A(i,j) ≥ 0) 
 For a Bakis HMM, we have aij=0 if j<i (A(i,j)=0 for j<i) 

 
B(N,M) is the distribution probability symbol matrix  
B(i,k) is the probability to obtain the kth  symbol when we are at state 
i. 

Bik ≥ 0  (B(i,k) ≥ 0)  
Σj Bij =1 (sum(B(i,:)=1)) 

 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start in the state i. 

Σ Pi(i) =1 
For a Bakis HMM Pi(i)= δ(i) 
With δ(i) is the Kronecker function equal to 1 for i=0 and null for 
i<>0 

 
We define here the matrix and update it within the training process of the HMM 
like the Baum function.
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 gen_bib 

 
 function 
 biblio=gen_bib(fpVQ,Nv,agrup,Ns,LBG,dpztoLBG,maxiterVQ,umbralVQ,  
 men,biblio) 
 

This function computes a library for all the different models’ parameters 
(a library for) based on the training vectors. 
According the set up made in the DHMM_DEF, the library is generated 
with the LBG algorithm or with the k-means algorithm (see kmedias 
function for further information about the k-means). 
 
 

Entry:  fpVQ is the matrix with the vectors to train the library (see DHMM and 
formato_lectura_secuencial functions) 
Nv number of vectors for the training 
agrup defines how to join the parameters together 
LBG is the choice of the algorithm to compile the library 
LBG = 1 the algorithm is LBM, in the other case we choose kMedias 
dptzoLBG percentage maximum for the distance of the code vector in 
the algorithm LBG  
maxiterVQ is the maximum number of iteration to compute the library 
(condition to stop the algorithm) 
umbralVQ is the threshold condition to stop the library computation 
(condition to  stop the algorithm) 
men=1 or 0 if men =1 the library generates message else no. 
biblio is a matrix parameter for the library computation (we define it in 
DHMM_DEF but calculate it here) 
 

Result:  biblio is now the library. 
 
This function uses the kmedias function. 
 

Algorithm (LBG) to design the library. 
VQ codebook design: 
We want to design the codebook for each parameter in each class. 
We try to find the codebook size and vectors in order to have the overall 
distortion minimized. 
With fpVQ the training data set and s a vector from fpVQ 
R the centroids of the library with r a vector of R (in the function is an 
element from biblio). 
d(s, r)= ||s-r||^2 
 
LBG (Linde, Buzo and Gray) algorithm: 
6. initialization of the library with the centroid r calculated with the 

vectors fpVQ from this class 
7. Define the vectors r1 = r + ε, r2 = r- ε 
8. The closest vectors from r1 (r2) are s1 (s2) 
9. Search for the centroids from s1 and s2 
10. Make the steps 3-4 several times. UmbralVQ and maxiterVQ are the 

conditions to stop. 
11. Make 1 to 5 up to obtain the desired numbers or this class 
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 iniciaHMM 
 
This function calculates the HMM optimal initial model for the Baum-Welch 
training. 
function [Aa,Ba,Pia]=iniciahmm(Ne,Ns,Np,BAKIS,salto,lrep,maxitermi) 
 
 
Entry:  if Bakis = 1 implements a Bakis HMM (also called left-right), else an 

ergodic HMM is defined  
Salto is the maximum path authorized in the Bakis HMM from a state 
to another. 
Maxitermi is the maximum iteration to calculate the initial HMM. 
Ne state number  
Ns symbol number for every state 
Np number parameters by symbol 
Lrep is a Matrix with the size from the training set data for every 
classes groups and parameters (see also the function 
formato_lectura_secuencial) 
 

Result:  Aa Ba and Pia are the matrices for the parameters of the HMM. 
 
In this function, we will generate a number of symbols in every state 
bigger than twice Ns. Thus, we make sure to initialize correctly the 
HMM. 

   
We use the viterbi and the genhmm functions. 
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 kMedias 

 
This function computes a k-mean algorithm for the library VQ. 
function [biblio]=kmedias(fpVQ,Lt,biblio,maxiter,umbral,men); 
  
Entry: fpVQ: vectors for the training if the library 
 Lt is the vectors numbers for the training 
 Biblio: library initial 
 Maxiter: number maximum for the iteration 
 Umbral is the threshold condition to stop the library computation 
 Men =1 this function generates messages else no. 
 
Result: Biblio: library after the training 
 
The algorithm k-mean is used to compute the N centroids in each library 
associated to each parameter in each class. The k-mean problem is to minimize 
the mean square error (MSE). 
The idea, in this algorithm, is to build the N centroids adding N new training 
vectors by step. We update the centroids step by step. 
 

1. The N first training vectors are the centoids(0). 
2.  Each vector added is assigned to the closest centroid(t) and 

the centroids(t+1) are recalculated with the new vectors added. 
3. The algorithm is terminated when centroid (t)= centroid(t+1) 

   (in our case it will be terminated when  
  Σ ||centroid(t)-centroid(t+1)|| < threshold  
  or when the iteration number > maxiter) 
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 ProbSec 

 
This function estimates the log of the probability to monitor a sequence O given an 
HMM. We use the log to avoid numerical problem. 
 
 function [logPO,logalfaT]=probsec(A,B,Pi,O) 
 
Entry: A(N, N) is the transition probability matrix from a state I to a state k. 

 
B{Np}(N,M) is the distribution probability symbol matrix  for each 
parameter. 
B(i,k) is the probability to obtain the kth  symbol when we are at state 
i. 

 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start in the state i. 
 
O is a matrix with the sequence to estimate. 
 

Result: logPO is the log of the probability to monitor the sequence O. 
 logalfaT: is the log (alfa(:, T)) where alfa is the forward probability 

matrix and T is the running time for the sequence O.  
 
We use in this function the prodBO function. 
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 prodBO 

 
This function calculates the product of the probability to monitor a sequence O with the 
probability of the backward B distribution. 
 function prob=prodBO(B,O,nc) 
 
Entry: B{Np}(N,M) is the distribution probability symbol matrix  for each 

parameter. 
B(i,k) is the probability to obtain the kth  symbol when we are at state 
i. 

 
O is a matrix with the sequence.  
O{Np}{number of vectors, number of the symbols}. 
 
nc is the sequence from O to estimate. 
 

Result: prob is the result of the product. That means prob is the probability for 
every state to generate the extracted component nc from the 
sequence O.
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 Resulhmm 

 
This function calculates the confusion matrix group by group.  
 function [Mcmed,Mcvot,recmed]=resulhmm(fhmm) 
 
Entry: fhmm is the name of the HMM. We will use it to store the results from 

the HMM. 
 

 
Result: Mcmed is the matrix of confusion calculated with a mean criterion.  

Mcvot is not yet implemented. 
recmed is the average of the recognition. 
 

Example: Mc = resulhmm(fhmm); 
Mc{agroup}{ng}: Mc is the matrix with groups gathered group by group and the 
Ngth combination. 
Mc{2}{4} is the 4th combination for the groups joined 2 by 2. 
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 ROC 

 
This functions analyses the results from the HMM. In particular it deals with the 
problem of false acceptance rate (FAR called here FMR false match rate) and false 
rejection rate (FRR called here FNMR false non match rate). 
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 Viterbi 

 
 This function calculates the sequence of the most probable states given 
the HMM and the sequence monitored O. We use the algorithm of Viterbi with 
the log for the numerical precision problems. 
 
 function qP=viterbi(A,B,Pi,O) 
 
Entry: A(N, N) is the transition probability matrix from a state I to a state k. 

 
B{Np}(N,M) is the distribution probability symbol matrix  for each 
parameter. 
B(i,k) is the probability to obtain the kth  symbol when we are at state 
i. 

 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start in the state i. 
 
O is a matrix with the sequence to estimate. 
 

Result: qP(T,1) is the sequence of the more probable states. 
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4. The CHMM 
 

The elements of the continuous HMM (CHMM) are similar to the DHMM 
case except that in the discrete case, the symbols observed are quantified in a 
library or VQ codebook. However for the CHMM, the distribution of the symbols 
emitted is continuous. Moreover, the multi-labeling do not exist for a CHMM 
since there are no labels. Thus, as for the DHMM, we define the elements of the 
CHMM. 

4.1. Elements of a CHMM 
  
 Thus, a CHMM model consists of a number of N states S={Si} and the 
observation string produced as a result of emitting a vector Ot each successive 
transitions from one state Si to another state Sj. The state transition probability 
distribution between state Si to Sj is A={aij}, and the observation probability 
distribution of emitting any vector Ot at state Sj is given by B={bj(Ot)}. The 
probability to be in the state i at the initial instant is Pi={πI }.   
 

aij= )( 1 ikjk SqSqP ==+     (1) 
bj(Ot)= )( jtt SqP =O     (2) 
πi  = )( 0 iSqP =       (3) 
 
In order to use the HMM in continuous, we will make some restrictions on 

the model form of the probability function (PDF). In our case, we will consider 
that the general observation can be represented by a finite mixture of 
Gaussians and with a multi parameter approach: 
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Then, given an observation sequence O, and a CHMM model λ=(A, B, 

Π), we can compute P(O | λ) the probability of the observed sequence by means 
of the forward-backward procedure. Both αt(i) and βt(i) are worked out by 
means of the forward-backward procedure.  

 
Forward: 
 

α1(i)= πI  *bi(O1)   (4) 
αt+1(j)=[Σi αt (i) * aij] bj(Ot+1 ) (5) 

 
Backward: 
 

βT(i)=aiN    (6) 
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βt-1(i)= [Σj βt(j) * aji] bi(Ot-1 )  (7) 
 
We can work out the probability of the observation sequence as: 
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And the probability of being in state Si at time t, given the observation sequence 
O, and the model λ, as: 
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The probability of being at state Si at time t and state Sj at time t+1 is: 
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4.2. Problems of the CHMM 

4.2.1. Training  
  

As we did for the DHMM, we use the Baum-Welch algorithm to 
recalculate the HMM model of a signature, and we adjust the model parameter 
λ=(A,B,Π) to maximize the probability of the observation sequence. The 
probability maximization is done for the parameter sequences of all the 
signatures’ repetitions. 

We accomplish the above task thanks to the iterative Baum-Welch 
method, which is equivalent to the EM (expectation-modification) procedure.  

 
The Baum-Welch method works as follows: 

1. Estimate an initial HMM model as λ= (A, B, Π). 
2. Given λ and the observation sequence O, we calculate a new model 

),,( Π= BAλ  such that  )()( λλ OO PP > . 

3. If the improvement threshold
P

PP
<

−

)(

)()(

λ

λλ

O

OO
, then stop. 

Put λ instead of λ and go to step 1. 
 
Thus, as for the DHMM, we reestimate the transition coefficients “A” and the 
initials states probabilities Pi with the same formulas. Moreover, for the CHMM, 
the Baum-Welch algorithm needs to estimate the means and variances for the 
mixture Gaussians and for the coefficients of the mixture of Gaussians [12]. 
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4.2.2. Classification 
 

As for the DHMM, we create a CHMM for each class to classify. Then, as 
mentioned-above, we train each CHMM with its own training set. To train the 
HMM of the 1st class, we only use the training set of the first class, and so on for 
the second class to the end. The Viterbi algorithm can be used to obtain the 
estimation of the most probable state sequence. Once all the HMMs Λ=(λ1 
...λW) are correctly trained, to classify a sequence for the observation O, 
Pw=P(O|λW) is calculated for all the λW. The unknown observation O is then 
classified by the process: 
 

Ww
pw w

≤≤
=
1

maxarg*   (12)            

 
Thus, w* is the optimum class for the observation O.  
  
 The initialization and stop criteria must be chosen adequately for the 
HMM. It directly interacts on the relevancy of the HMM [13].  Equi-probable and 
equal occupancy methods for the initial models are provided as well as iteration 
and rate of the error for the stop criterion. 
  

As for the DHMM, we build the matrices of confusion for each group of 
vector (see the examples for further information). The matrix of confusion is a 
matrix built during the test phase. It shows how and where the HMM fails. Thus, 
the recognition rate and the matrix of confusion give a good idea about the 
pertinence for the given set of parameters within the recognition task.  
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4.3. Description of the CHMM part of the toolbox 
 

In this part, we describe the different functions developed in the 
gpdsHMM toolbox in order to manage a continuous Hidden Markov Model. 
Firstly, the main functionalities, for each function, are summarized and then, we 
give for each function the way to use it and the parameters to take into account. 
For the CHMM, we use some of the functions mentioned above for the DHMM.  

 
To use the continuous HMM, you need the netlab package. Please refer 

to the on-line help from netlab for further details. 
http://www.ncrg.aston.ac.uk/netlab/ 
 

 
 
Illustration 4:1 Block-diagram for a CHMM 
 

In the functions described in this toolbox, some are proposed as 
examples. In particular, the functions CHMM and CHMM_DEF must be adapted 
for yours own HMM. See the examples provided to have further information 
about it. In the second part of this point, each function is described with the 
formats of the inputs and outputs parameters. 
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AlfaBetac: this function is equivalent to the AlfaBeta function used for the 
DHMM. 
Baumc: it is equal to the function Baum but used for a CHMM instead of a 
DHMM. 
CHMM_DEF: this function defines the parameters for the CHMM and in 
particular the mixture of Gaussians used in this case. 
CHMM: this is a script to train and test the HMM. 
CHMM_MEN: it is equal than the DHMM_MEN.  
DHMM2CHMM: this function generates a CHMM from a DHMM. 
GencHMM: it is equivalent to the genHMM but used for a CHMM. 
IniciacHMM: it is equivalent to the iniciaHMM but used for a CHMM. 
Probsimb: this function calculates the probability for a vector O to be generated 
from any state Si. 
Viterbic: function to calculate the most probable state sequence given a CHMM 
and a sequence monitored O. 
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 AlfaBetac 

 
This function calculates the alpha and beta from the HMM defined with the 
matrix A, B and Pi. The alfa and beta are scaled to avoid the precision problem. 
 function [alfa,beta,c]=alfabetac(A,B,Med,Var,Pi,vectores,agrup) 
 
Entry: A(N, N) is the transition probability matrix from a state I to a state k. 

 
B{Np}{N}(Ngauss{ip},1) is the weight for the Gaussians of the HMM. 

 
Med{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)): Matrix with the values 
of the medians for the Gaussians of the HMM. 
 
Var{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)): Matrix with the values 
of the variances for the Gaussians of the HMM. 
 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start in the state i. 
 
Vectores: is a matrix with the sequence monitored used to estimate 
all the parameters. 
 

Result: alfa is the forward probability matrix. 
alfa(i,t) when alfa is not scaled is the probability to observe the 
sequence O(1,:),….,O(t,:) for the state i at the instant t for all the 
parameters. 
We have in particular P(O/(A, B, Pi))= sum(alfa(:,T)).  
When alfa is scaled, we have sum(alfa(:,t))=1. 
 

 beta is the backward probability matrix. 
beta(i,t) when beta is not scaled is the probability to observe the 
sequence O(t+1,:),….,O(T,:) for the state i at the instant t for all the 
parameters. 
 
c(T,1) is the vector where we store the scale value for the instant t. 
We have c(T,1)= ones(T,1) if the alfa and beta are not scaled.  

 
We have the following relations on the alfa and beta: 
 Relations between alfa scaled and not scaled 
  h=cumprod(c); 
  alfa_scaled(:,t)= h(t)*alfa_no_scaled; 
 Relations between beta scaled and not scaled 
  g=cumprod(c(T:-1:1); 
  beta_scaled(:,t)=g(t)*beta_no_scaled(:,t); 
 
If alfa and beta are not scaled, the probability to observe O is (this product is 
independent of t): 
 alfa( :,t)’*beta( :,t) = sum (alfa(T,:)) 
 
If alfa and beta are scaled (it depends on t): 
 alfa(t,:)’*beta(t,:) = c(t)*sum (alfa(T,:)) 



 40

 
 Baumc 

 
This function computes the Baum Welch algorithm in order to estimate the 
HMM parameters. 
function [A1,B1,Med1,Var1,Pi1,logPOs]=baumc(A,B,Med,Var,Pi,nftrain,lrep,agrup) 

 
A, B and Pi are the matrices of the HMM defined with the function genHMM for 
example. 

 
Entry: A(N, N) is the transition probability matrix from a state I to a state k. 

 
B{Np}{N}(Ngauss{ip},1) is the weight for the Gaussians of the HMM. 

 
Med{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)): Matrix with the values 
of the medians for the Gaussians of the HMM. 
 
Var{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)): Matrix with the values 
of the variances for the Gaussians of the HMM. 
 
Pi(i) is the probability to start in the state i. 
 
Lrep is a matrix with the vectors number and symbols number. 
 
A1(N, N) is the transition probability matrix updated with the Baum 
Welch algorithm. 
B1{Np}{N}(Ngauss{ip},1) is the distribution probability symbol matrix 
updated with the Baum Welch algorithm. 
Med{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)): Matrix with the values 
of the medians for the Gaussians of the HMM updated. 
Var{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)): Matrix with the values 
of the variances for the Gaussians of the HMM updated. 
Pi1(N,1) is the distribution probability for the initial state updated. 
logPOs(nr,1): probability that the HMM with the parameters (A,B,Pi) 
generates each realisation of the labels entries of the subroutine.  
 

This function calls the probsimb function. 
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 CHMM 

 
This program calls the different functions to design the HMMs (one for each 
class and for each group) designed in the function CHMM_DEF. . It is here as 
example to make the HMM work. 
 
function chmm(fhmm,fptrain,fptest,fhmmout) 
 
Entry:  fhmm is the name of the HMMs seted up in the function CHMM_DEF 
         
        fptrain is the name of the file containing the sequences of parameters to  
 train each HMM with its own group of training set. In each repetition, we 
 find the a sequence of parameters for a class and a group. 
 
          fptest is the name of the file containing the sequences of parameters to 

 test each HMM with its own group of test set. In each repetition, we find a 
 sequence of parameters for a class and a group. 

 
          fsalhmm: Name of the file containing the outputs of each classifier for 

 each sample of the database of the test in a cell array  
  salhmm{class, group}(repetition). 
        
Variables defined in the fhmm file with the function CHMM_DEF: 
 
     nc: number of classes. 
     ng: number of groups. 
     agrup{ng}: the way to gather the parameters together. 
     Np(ng): number of parameters by group. 
 Ne(nc,ng): Number of states of the HMM for each class and group. We 
 could fix a number of states different for each group ng and each class. 
 For example, Ne(1,1) =10 and Ne(2,2)=20…In this case we have 10  
 states for the HMM of the first class and first group and 20 for the HMM 
 of the second class and the second group. 

Ngauss is the number of Gaussians in the mixture of Gaussians used to 
represent the distribution of the observation by state. We can change the 
number of Gaussians for each HMM (for each parameter of each group). 
Indeed, we have for example, Ngauss{ig}=6.*ones(Np(ig),1); and thus, 
we could fix Ngauss{1}=6 [1 2] and thus we have 6 Gaussians for the 
first parameter of the first group  and 12 for the second parameter of the 
first group. We could change those values for the second group. 

 
 
      Maxitermi is the maximum iteration for the initial model 
 umbral: Umbral is the threshold condition to stop the HMM (the error is 
 calculated with the maximum likelihood criterion) 
 maxiter: Maxiter is the maximum iteration number in the Bakis HMM 
 (condition to stop the algorithm) 
       salto: Salto is the maximum path authorized in the Bakis HMM from a 
 state to another. 
 BAKIS: if Bakis = 1 implements a Bakis HMM (also called left-right), else 
 an ergodic HMM is defined  
 
The variables of the HMM: 
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    cell array A=cell(nc,ng); 
    cell array B=cell(nc,ng); 
    cell array Pi=cell(nc,ng); 
     cell array Med=cell(nc,ng); 
    cell array Var=cell(nc,ng); 
 
  Salhmm is a matrix used to store the probabilities values 
 
NOTA: use the scripts chmm_def, and chmm_men. 
NOTA: use the functions: iniciacHMM, genchmm, alfabetac,  probsecC, viterbic, 
baumc 
NOTA: if fptrain=” “ we only realize the test 
NOTA: if fptest=” “ we only make the training  
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 CHMM_DEF 

 
This function is described only as example to set up the HMM. 
 
function chmm_def(fhmm) 
 
This function defines the parameters of the discrete HMM. We can split the 
parameters in 4 groups: 
 
Entry: fhmm is the HMM´s file name. 
 

 vDB defines the database: 
vDB=[' nc ng agrup Np']; 
where nc is the number of class, ng is the number of group, 
agrup defines how to gather the parameters together. For example, if 
we have two parameters for the first group. If we fix agrup{1}=[1 3]; 
we create only one library for this group of parameter. If we fix 
agrup{1}=[1 2 3]; we create two libraries (one for the first parameter 
and one for the second parameter of the group). And so on, with 
three parameters, for agrup{1}=[1 3 4]; we create a library for the first 
and second parameters and one for the fourth parameter. 
NP is a vector with the number parameter of each group. 

We have the following relations: 
[nc,ng]=size(vl); 
agrup{ig}=[1 .... size(vl{1,ig}{1},2)+1]; 
Np(ig)=length(agrup{ig})-1; 
 

 vHMM defines the HMM : 
 vHMM =[' BAKIS salto maxiter umbral maxitermi Ngauss Ne A B Med Var 
Pi']; 

if Bakis = 1 implements a Bakis HMM (also called left-right), else an 
ergodic HMM is defined  
Salto is the maximum path authorized in the Bakis HMM from a state 
to another. 
Maxiter is the maximum iteration number in the Bakis HMM (condition 
to stop the algorithm) 
Umbral is the threshold condition to stop the HMM (the error is 
calculated with the maximum likelihood criterion)  
Maxitermi is the iteration number to find the initial model. 
Ne(nc,ng): Number of states of the HMM for each class and group. 
We could fix a number of states different for each group ng and each 
class. For example, Ne(1,1) =10 and Ne(2,2)=20…In this case we 
have 10 states for the HMM of the first class and first group and 20 
for the HMM of the second class and second group. 
Ngauss is the number of Gaussians in the mixture of Gaussians used 
to represent the distribution of the observation by state. For instance, 
Ngauss{ig}=6.*ones(Np(ig),1); Or, we could change it and fix a 
number different for each parameter of each group For instance: 
Ngauss{ig}=[1 ; 3]; 
A, B and Pi are the matrices of the HMM (it will be calculated thanks 
to the CHMM) but must de defined here. 
Med and Var are the matrices of the mean and variances of the 
Gaussians. 
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cell array A=cell(nc,ng); 
cell array B=cell(nc,ng); 
cell array Pi=cell(nc,ng); 
cell array Med=cell(nc,ng); 
cell array Var=cell(nc,ng); 

 
In the CHMM, we have in particular the cell B, Med and Var with the relation:  
 B{ic,ig}{ip}{ie}=zeros(Ngauss{ig}(ip),1);       
            Med{ic,ig}{ip}{ie}=zeros(Ngauss{ig}(ip),agrup{ig}(ip+1)-agrup{ig}(ip)); 
            Var{ic,ig}{ip}{ie}=zeros(Ngauss{ig}(ip),agrup{ig}(ip+1)-agrup{ig}(ip)); 
And B{ic,ig}{ip}{ie}is the coefficient of the mixture of Gaussian for the HMM of 
the class ic, group ig. Calculated for the parameter ip of the group ig and in the 
state ie. We have the same relation for the variance of the Gaussians of the 
mixture of Gaussian defined for the HMM of the class ic, group ig, for the 
parameter ip of the group ig and the state ie (defined in Var). And we have the 
same relation for the mean of the Gaussians of the mixture of Gaussian 
(defined in Med). 

 
 

  vTEST is the matrix parameter for the test : 
vTEST=[' salhmm']; 
Salhmm is a matrix used to store the probabilities values 

 
We have the following relations: 
salhmm=cell(nc,ng); 
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 CHMM_MEN 

 
This script is a small program that prints some messages to describe the computation of 
the HMM. 
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 dhmm2chmm 

 
This function is used to migrate from a Discrete HMM to a Continuous HMM. The idea 
is to use the DHMM trained to calculate the initials parameters of the CHMM. This 
function uses the Netlab utility.  
function dhmm2chmm(filedhmm,filechmm) 
 
 filedhmm is the file with the parameters of the discrete HMM. 
 filechmm is a file containing the parameters of the continuous HMM wanted. 
 
This function eliminates the variable Ns (number of symbols) and initializes the 
variables Med Var maxitermi and Ngauss (see the CHMM_DEF function for further 
information). 
We generate 1000 samples to simulate each Gaussian with the variance and mean 
calculated. 
We then save the continuous HMM variables in the file “filechmm”. 
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 GENCHMM 

 
This function generates a CHMM with N states and Ngauss Gaussians. 
function [A,B,Med,Var,Pi]=genchmm(N,vcombl,vmean,vstd,agrup,Ngauss,Np,BAKIS,salto); 
  
Entry: N is the state number 

vcombl is a parameter of the mixture of Gaussians. See the function 
gmminit of the netlab software. 
vmean is the vector of the initial means 
vstd is the vector of the initial diversion 
agrup(Np+1,1) defines how to gather the parameters together 
Ngauss(Np,1) number of Gaussians 
Np number of parameters 
if Bakis = 1 implements a Bakis HMM (also called left-right),else an 
ergodic HMM is defined  
Salto is the maximum path authorized in the Bakis HMM from a state 
to another. 

 
Result: A, B, Med, Var and Pi are the matrices of the HMM defined within this 

function. 
 
A(N, N) is the transition probability matrix with the following 
conditions: 
 Σj Aij =1 (sum(A(i,:)=1)) 
 Aij ≥ 0  (A(i,j) ≥ 0) 
 For a Bakis HMM, we have aij=0 if j<i (A(i,j)=0 for j<i) 

 
B{Np}{N}(Ngauss{ip},1) is a structure with the weight of each 
Gaussian for each state and to obtain each parameter. 
 
Med: Med{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the mean for 
each Gaussian in each state and for each gathering of parameters 
 
Var: Var{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the variance for 
each Gaussian in each state and for each gathering of parameters 
 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start in the state i. 

Σ Pi(i) =1 
For a Bakis HMM Pi(i)= δ(i) 
With δ(i) is the Kronecker function equal to 1 for i=0 and null for 
i<>0 

 
We define here the matrix and update it within the training process of the HMM 
like the Baum function. This function uses see the netlab software utility. Please 
refer to this utility for further information. 
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 iniciacHMM 
 
This function calculates the CHMM optimal initial model for the Baum-Welch 
training. 
function [Aa,Ba,Meda,Vara,Pia]= 
iniciachmm(Ne,Np,BAKIS,salto,nftrain,lrep,agrup,Ngauss,maxitermi) 
 
 
Entry:  Ne state number  

Np number parameters by symbol 
 if Bakis = 1 implements a Bakis HMM (also called left-right), else an 

ergodic HMM is defined  
Salto is the maximum path authorized in the Bakis HMM from a state 
to another.  
Nftrain: is the name of the file with the training data set  
Lrep is a Matrix with the size from the training set data for every 
classes, groups and parameters (see also the function 
formato_lectura_secuencial) 
agrup defines how to gather the parameters together (see the 
CHMM_DEF). 
Ngauss is the number of Gaussians used in the mixture of 
Gaussians. 
Maxitermi is the maximum iteration to calculate the initial HMM. 
 

Result:  Aa, Ba, Meda, Vara and Pia are the matrices for the parameters of 
the HMM. Meda and Vara are the mean and the variance for each 
Gaussian. 
 
In this function, we will generate a number of symbols in every state 
bigger than twice Ns. Thus, we make sure to initialize correctly the 
HMM. 

   
We use the viterbic and the genchmm functions. And the netlab utility (gmm 
gmminit and gmmem). 
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 ProbsecC 

 
This function estimates the log of the probability to monitor a sequence O given a 
HMM. We use the log to avoid numerical problem. 
 
 function [logPO,logalfaT]=probsecc(A,B,Med,Var,Pi,O,agrup) 
 
Entry: A(N, N) is the transition probability matrix from a state I to a state k. 

 
B{Np}{N}(Ngauss{ip},1) is a structure with the weight of each 
Gaussian for each state and to obtain each parameter. 
 
Med: Med{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the mean for 
each Gaussian in each state and for each gathering of parameters 
 
Var: Var{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the variance for 
each Gaussian in each state and for each gathering of parameters 

 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start in the state i. 
 
O is a matrix with the sequence to estimate. 
 
agrup(Np+1,1) defines how to gather the parameters together 
 
 

Result: logPO is the log of the probability to monitor the sequence O. 
 logalfaT: is the log alfa(:, T) where alfa is the forward probability 

matrix and T is the running time for the sequence O.  
 
We use in this function the alfabetac and probsimb function. 
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 Probsimb 

 
 
This function caluclates the probability to have the vector of the observation O 
generated by each state of the HMM. We suppose dfp Gaussian. 
 
 function [PS,Psk]=probsimb(B,Med,Var,O,agrup) 
 
Entry: B{Np}{N}(Ngauss{ip},1) is a structure with the weight of each 

Gaussian for each state and to obtain each parameter. 
 
Med: Med{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the mean for 
each Gaussian in each state and for each gathering of parameters 
 
Var: Var{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the variance for 
each Gaussian in each state and for each gathering of parameters 
 
O is a matrix with the sequence to estimate. 
 
agrup(Np+1,1) defines how to gather the parameters together 
 

Results: PS(N,1): Probability of the vector of the observations O in the state 
  ie. 
   
  Psk{Np}{N}(Ngauss{ip},1): Normalizad probability  of the vector of  
  the observations O in the state ieusing the symbol k.  
   
Normalizing the data, we have: sum(Psk(i,M*d+1:M*d+M))=1 for d=0,1,...,Dim-1 
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 verfdp 

 
This function plots the pdf and the distribution for each state. We stand that the fdp is 
Gaussian. 
 
 function [Ptotal,Ototal]=verfdp1(B,Med,Var,agrup) 
 
Entry:  B{Np}{N}(Ngauss{ip},1) is a structure with the weight of each 

Gaussian for each state and to obtain each parameter. 
 
Med: Med{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the mean for 
each Gaussian in each state and for each gathering of parameters 
 
Var: Var{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the variance for 
each Gaussian in each state and for each gathering of parameters 

 
agrup(Np+1,1) defines how to gather the parameters together 
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 Viterbic 

 
 This function calculates the sequence of the most probable states given 
the HMM and the sequence monitored O. We use the algorithm of Viterbi with 
the log for the numerical precision problems. 
 
 function qP=viterbic(A,B,Med,Var,Pi,O,agrup) 
 
Entry: A(N, N) is the transition probability matrix from a state I to a state k. 

 
B{Np}{N}(Ngauss{ip},1) is a structure with the weight of each 
Gaussian for each state and to obtain each parameter. 
 
Med: Med{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the mean for 
each Gaussian in each state and for each gathering of parameters 
 
Var: Var{Np}{N}(Ngauss(ip),agrup(ip+1)-agrup(ip)) is the variance for 
each Gaussian in each state and for each gathering of parameters 

 
Pi(N,1) is the distribution probability for the initial state i. 
Pi(i) is the probability to start in the state i. 
 
O is a matrix with the sequence to estimate. 
 
agrup(Np+1,1) defines how to gather the parameters together 
 
 

Result: qP(T,1) is the sequence of the most probable states. 
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5. Examples 

5.1. Polygons: the DHMM example 
 
 The polygons is an example to use the HMM toolbox. In this part, we can 
see how the DHMM is initialized and used. First, we generate four different 
classes of polygons in the function “prueba”. We extract the parameters (i.e. in 
this case the polar coordinate and the diff of the polar coordinate). Then, we 
split the database in the function Train and call DHMM_DEF to initialize the 
HMM with the set up wanted.  Please see the block diagram to understand how 
this example works:  
 

 
Illustration 5:1 block diagram of the polygons: the DHMM example. 
 Moreover, this example plots the matrices Gamma, Alfa, radius and the 
most probable state sequence calculated for each set of the training and for all 
the different HMMs (one for each class and each group of parameters). Thanks 
to this example, we can see how the DHMM is defined for a concrete 
application, what is the format used to store the input parameters for the training 
and for the test.  
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 Prueba 

 
  This function first creates 4 classes of different polygons. Then, thanks to 
the function cart2pol, it parameterizes the contour of the polygons in polar 
coordinate. The angle and the radius can be chosen as parameters inputs of 
the DHMM. In our case, we added the diff of the radius and thus made two 
groups of parameters. The DHMM inputs are stored in a cell. Then, this cell will 
be saved. 
 
The database is created and each parameter is stored in a structure array cell. 
We store the parameters as follow: 
vlcp{number of the class, number of the group}{number of the repetition} 
 
 Once we have calculated the radius and angle for the polygon, we can 
plot it thanks to the function “Pol2contourcont”. “Pol2contourcont” creates an 
image of the polygons. Putting a 1 in the “if” of the code source of the function, 
we can show the image created for each class and repetition (see illustration 
5:2 and 5:3). We create 200 samples, 100 for the training and 100 for the test. If 
you want to change it, you can change the number of repetition “nr”. 
 
The cell “vlcp” is then saved to be reloaded in the train function. 
The function train is called at the end of this function. 
 
 

 Pol2contourcont 
 
 This function creates the polygons as an image. If you want to plot it, put 
a 1 in the “if” of the function “prueba” (see the code source of the function 
prueba). Thus, you obtain the images (see illustration 5:2 and 5:3). 
 
 

 Train 
 
 Once, we have calculated the inputs, we define the DHMM thanks to the 
functions Train and DHMM_DEF. The train function first loads the parameters 
and then splits the data base into the training set and the test set, and calls the 
DHMM_DEF function and then the DHMM function. The set for the trainings 
and for the test are taken at random for each class. The training set is saved in 
a cell format vtrain and the test in vtest. In this function, we also define the 
percentage for the training and for the test (percentage for the training is 
ptrain=50, and for the test, 100-ptrain). You can change it. Moreover, we print in 
the file prueba.txt the messages printed on the screen during the function train. 
 
 At the end, we call the function resulhmm to create the matrices of 
confusion for each group. 
 
 

 Plot_HMM  
 
 This function plots different parameters characteristic of the DHMM. As 
you can see in the illustrations 5:4 to 5:7, this script plots the alfa, gamma 
radius and the most probable state sequence for each DHMM, repetition, class 
and groups of parameters. 
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 DHMM_DEF 

 
This function defines the DHMM for our example. In the general case, 

please refer to the 2nd part of this document. It is important to define the right 
number of classes and groups otherwise, the function fails and an error 
message is printed. 

 
First, we define vDB the VARIABLE of the database: 

vDB=[' nc ng agrup Np']; 
Number of classes nc and number of groups ng. 

nc=4; here we have 4 classes 
ng=2; and two groups 
 

 How to gather the parameters? We have two groups of parameters, the 
angle and the radius, and, the diff of the radius and the angle. 

agrup=cell(ng,1); 
Np=zeros(ng,1); 
agrup{1}=[1 2 3]; We gather (angle and the radius) the first parameters  

          together but create a library for the radius and a library  
          for the angle. If we fix agrup{1}=[1 3]; we create only  
          one library for this group of parameter. 

agrup{2}=[1 2 3]; We gather (angle and diff(radius)) the other parameters 
together. 

Ne=10.*ones(nc,ng); 10 states are been chosen, if we want to change  
         it: Ne=20.*ones(nc,ng) 

TOPN{ig}=1.*ones(Np(ig),1); if we want to put two labels 
TOPN{ig}=2.*ones(Np(ig),1), we have to change 
topntest when we change the number of labels too. We 
can also set a number of labels different for each set of 
parameter and group. For instance: 
TOPN{4}=4.*ones(Np(4),1); and 
TOPN{ig}=1.*ones(Np(ig),1); for ig>1.By experience, the 
results are quite good fixing only one label by 
parameter. 

 
 

 We chose a Bakis HMM with a maximum path of 1, maximum iteration of 
the Baum Welch is 30, threshold to stop the HMM is 0.005, Maxitermi is the 
iteration number to find the initial model 10. 

 
BAKIS=1;  
salto=1; 
maxiter=30; 
umbral=0.005; 
maxitermi=10; 
 

And LBG is the choice of the algorithm to compile the library. 
LBG = 1 the algorithm is LBG, in the other case we choose the k-mean (see 
“kMedias” function). 
dptzoLBG percentage maximum for the distance of the code vector in the 
algorithm LBG (see gen_bib).  
maxiterVQ is the maximum number of iteration to compute the library (condition 
to stop the algorithm). 
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umbralVQ is the threshold condition to stop the library computation (condition to 
stop the algorithm). 
men=1 or 0 if men =1 the library generates message else no. 
biblio is a matrix parameter for the library computation (we define it here but 
calculate in the gen_bib function). 
 

Here we have chosen: 
LBG=1; 
dpztoLBG=0.1; 
maxiterVQ=40; 
umbralVQ=0.001; 
men=1; 
 
vTEST is the matrix parameter for the test : where TOPNtest is the 

number of labels to take into account for the multi-labeling during the test 
phase, Salhmm is a matrix used to store the probabilities values 

 
   TOPNtest{ig}=1.*ones(Np(ig),1); To take into account two labels: 

TOPNtest{ig}=2.*ones(Np(ig),1). We can also set a number of 
labels different for each set of parameters and group. For 
instance: TOPNtest{1}=4.*ones(Np(1),1) and 
TOPNtest{ig}=2.*ones(Np(ig),1) for ig>1.By experience, the 
results are quite good fixing only one label by parameter. 

 
 

Analysis of the example 
 
Then, the train function calls the DHMM function from the toolbox and 

calculate the different models of the HMM (one for each class and group of 
parameters) according to the set up made in the DHMM_DEF. Thanks to this 
example, we can see the way to set up a discrete HMM and to use it in order to 
classify four different classes of polygons with two different groups of 
parameters. We use a Bakis DHMM and the LBG algorithm associated to the k-
mean to calculate the libraries for each set of parameters. We use only one 
label but changing the set up in the DHMM_DEF, we could put more labels and 
a number different for each parameter of each group. The results obtained are 
analyzed thanks to the matrix of confusion. 

  
Thus, the results obtained are of the range of: 

RATE OF RECOGNITION BY GROUP 1: 95 
RATE OF RECOGNITION BY GROUP 2: 99 
RATE OF RECOGNITION BY GROUP 1  2: 98 

 
And the matrices of confusion: 
Matrix_of_confusion_first_group = Mc{1}{1} 
 
     100     0     0     0 
          0    64     0    36 
          4     0    96     0 
         0     0     0   100 
 
Matrix_of_confusion_second_group = Mc{1}{2} 
 
        100     0     0     0 
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            0    99     0     1 
           5     0    95     0 
            0     0     0   100 
 
 
Matrix_of_confusion_union = Mc{2}{1} 
 
     100     0     0     0 
          0    90     0    10 
       2     0    98     0 
      0     0     0   100 
 
 As we can see in the first matrix, the second class is confused with the 
fourth one (for 36 samples) and the third with the first one (for 4 samples). We 
can see the confusions for the second group and the union of the outputs in the 
matrices Mc{1}{2} and Mc{2}{1}. 
  

Thanks to the illustrations 5-2 and 5-3, we can see the 4 classes of polygons 
and the variation of the radius with the angle for each class. The illustrations 5-3 
to 5-7 show how the different discrete HMM interprets the variation of the 
radius. In particular, we can see in the two graphs of the most probable state 
sequence, the differences between the HMM of the first class and of the fourth 
class. This example gives us a good clue to understand the process to classify 
a sample thanks to the technology of the Hidden Markov Model. 
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Illustration 5:2 Samples of the 4 classes of the example. 

 
Illustration 5:3 The radius and angle for the 4 polygons of the illustration 5:1 
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Illustration 5:4 For the first repetition of the first class, the radius is plotted in 
the graph 1 and gamma is calculated for the group 1 of the first DHMM. 

 
Illustration 5:5 For the first repetition of the first class, the most probable state 
sequence is plotted in the graph 1 and alpha is calculated for the group 1 of the 
first DHMM. 
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Illustration 5:6 For the first repetition of the first class, the radius is plotted in 
the graph 1 and gamma is calculated for the group 1 of the fourth DHMM. 

 
Illustration 5:7 For the first repetition of the first class, the most probable state 
sequence is plotted in the graph 1 and alpha is calculated for the group 1 of the 
fourth DHMM. 
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5.2. Polygons: the CHMM example 
 

The polygons is an example to use the HMM toolbox. In this part, we can 
see how the CHMM is initialized and used. First, we generate four different 
classes of polygons in the function “prueba”. We extract the parameters (i.e. in 
this case the polar coordinate and the diff of the polar coordinate). Then, we 
split the database in the function “trainCHMM” and call CHMM_DEF to initialize 
the HMM with the parameters wanted.  Please see the block diagram to 
understand how this example works: 
 

 
Ilustración 5:8 Block diagram of the polygons: the CHMM example. 
 

Moreover, this example plots the matrices Alfa, the most probable state 
sequence calculated for each set of the training and for all the different HMMs. 
The mixture of Gaussians is also drawn for each state of each HMM. Thanks to 
this example, we can see how the CHMM is defined for a concrete application, 
what format we use to store the input parameters for the training and for the 
test. As for the discrete HMM example, the inputs for the HMM are saved in a 
cell array format. 
 

Reload 
the 

HMM 

 
 
 
 
 

Creation of the DB of polygons

Pol2contourcont 

Poligono 

Prueba

 
 
 
 
 
 
Split the DB and create the HMM (see the 
HMM explanation for further information)

TrainCHMM 
Splits the 

database to a 
training set and 

a test set 

CHMM_DEF

CHMM

Plot_CHMM, in this part, 
we plot the main 

parameters of the HMM 

DB 

 
CHMM 

V 
I 
T 
E 
R
B 
I 
C 

Most 
probable 

state 
sequence 

Plot 

A 
l 
f
a 

Mixture of 
Gaussians for 
each state and 
each CHMM 



 62

 
 Prueba 

 
  First, this function creates 4 classes of different polygons. Then, thanks 
to the function “cart2pol”, it parameterizes the contour of the polygons in polar 
coordinate. The angle and the radius can be chosen as parameters inputs of 
the CHMM. In our case, we added the diff of the radius and thus made two 
groups of parameters. The CHMM inputs are stored in a cell. Then, this cell will 
be saved. 
 
 The database is created, and each parameter is stored in a structure 
array cell. We store the parameters as follow: 
vlcp{number of the class, number of the group}{number of the repetition} 
 
 Once we have calculated the radius and angle for the polygon, we can 
plot them thanks to the function “Pol2contourcont”. “Pol2contourcont” creates 
an image of the polygon. Putting a 1 in the “if” of the code source of the 
function, we can show the image created for each class and repetition (see 
illustration 5:2 and 5:3). We create 200 samples, 100 for the training and 100 for 
the test. If you want to change it, you can change the number of repetition “nr”. 
 
 The cell “vlcp” is then saved to be reloaded in the “trainCHMM” function. 
The function “trainCHMM” is called at the end of this function. 
 
 

 Pol2contourcont 
 
 This function creates the polygons as an image. If you want to plot it, you 
put a 1 in the “if” of the function “prueba” (see the code source of the function 
“prueba”). Thus, you obtain the images (see illustration 5:2 and 5:3). 
 
 

 trainCHMM 
 
 Once, we have calculated the inputs, we define the CHMM thanks to the 
functions “trainCHMM” and CHMM_DEF. The “trainCHMM” function first loads 
the parameters and then splits the data base into the training set and the test 
set, and calls the CHMM_DEF function and then the CHMM function. The set of 
samples for the trainings and for the tests are taken at random for each class. 
The training set is saved in a cell format vtrain and the test in vtest. In this 
function, we also define the percentage for the training and for the test 
(percentage for the training is ptrain=50, and for the test, 100-ptrain). You can 
change it. Moreover, we print in the file prueba.txt the messages printed on the 
screen during the function “trainCHMM”. 
 
 At the end, we call the function “resulhmm” to create the matrices of 
confusion for each group. 
 
 

 Plot_CHMM  
 
 This function plots different parameters characteristic of the DHMM. As 
you can see in the illustrations 5:9 to 5:10, this script plots the alfa, the most 
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probable state sequence for each CHMM, repetition, class and groups of 
parameters. It also plots the mixture of Gaussians for each state of each HMM. 
 

 CHMM_DEF 
 
This function defines the CHMM for our example. In the general case, 

please refer to the 2nd part of this document. It is important to define the right 
number of classes and groups otherwise, the function fails and an error 
message is printed. 

 
First, we define vDB the VARIABLE of the database: 

vDB=[' nc ng agrup Np']; 
Number of classes nc and number of groups ng. 

nc=4; here we have 4 classes 
ng=2; and two groups 
 

 How to gather the parameters? We have two groups of parameters, the 
angle and the radius, and, the diff of the radius and the angle. 

agrup=cell(ng,1); 
Np=zeros(ng,1); 
agrup{1}=[1  3]; We gather (angle and the radius) the first parameters  

          together.  
agrup{2}=[1 2  3]; We gather (angle and diff(radius)) the other 

parameters together. In this case, we have different 
values for the mixture of Gaussians for the angle and 
the diff(radius). 

Ne=12.*ones(nc,ng); 12 states are been chosen, if we want to change it: 
Ne=20.*ones(nc,ng). We can also fix a different 
number of states for each HMM. For instance, we 
could fix different number of states for each class and 
group’s HMM by Ne= [3 4; 5 6; 7 8; 9 10]; 

Ngauss{ig}=6.*ones(Np(ig),1); Ngauss is the number of Gaussians in the 
mixture of Gaussians used to represent the 
distribution of the observation by state. Here, we have 
put 6 for each parameter of each group. Or, we could 
change it and fix a number different for each 
parameter of each group. For instance: Ngauss{1}=[1 ; 
3]; 

 
 
 

 We chose a Bakis HMM with a maximum path of 1, maximum iteration of 
the Baum Welch is 30, threshold to stop the HMM is 0.005, Maxitermi is the 
iteration number to find the initial model 10. 

 
BAKIS=1;  
salto=1; 
maxiter=30; 
umbral=0.005; 
maxitermi=10; 
 
vTEST is the matrix parameter for the test : Salhmm is a matrix used to 

store the probabilities values output for each repetition. 
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Matrices of the HMM 
 

A=cell(nc,ng); 
B=cell(nc,ng); 
Med=cell(nc,ng); 
Var=cell(nc,ng); 
Pi=cell(nc,ng); 

In the CHMM, we have in particular the cell B, Med and Var with the relations:  
 B{ic,ig}{ip}{ie}=zeros(Ngauss{ig}(ip),1);       
           Med{ic,ig}{ip}{ie}=zeros(Ngauss{ig}(ip),agrup{ig}(ip+1)-agrup{ig}(ip)); 
           Var{ic,ig}{ip}{ie}=zeros(Ngauss{ig}(ip),agrup{ig}(ip+1)-agrup{ig}(ip)); 
 
 And B{ic,ig}{ip}{ie}is the coefficient of the mixture of Gaussian for the 
HMM of the class ic, group ig. Calculated for the parameter ip of the group ig 
and in the state ie. We have the same relation for the variance of the Gaussians 
of the mixture of Gaussian defined for the HMM of the class ic, group ig, for the 
parameter ip (of this group) and the state ie. And we have the same relation for 
the mean of the Gaussians of the mixture of Gaussian (defined in Med). 

 
Analysis of the example 

 
Then, the “trainCHMM” function calls the CHMM function from the 

toolbox and calculate the different models of the HMM (one for each class and 
group of parameters) according to the set up made in the CHMM_DEF. Thanks 
to this example, we can see the way to set up a continuous HMM and to use it 
in order to classify four different classes of polygons with two different groups of 
parameters. We use a Bakis CHMM. The results obtained are analyzed thanks 
to the matrices of confusion. 

 
 

Thus, the results obtained are of the range of: 
RATE OF RECOGNITION BY GROUP 1: 91.25 
RATE OF RECOGNITION BY GROUP 2: 95.5 
RATE OF RECOGNITION BY GROUP 1  2: 99 

 
And the matrices of confusion: 
Matrix_of_confusion_first_group = Mc{1}{1} 

 
    96     0     4     0 
     0    75    11    14 
     0     0   100     0 
     0     6     0    94 
 

Matrix_of_confusion_second_group = Mc{1}{2} 
 
   100     0     0     0 
    12    84     0     4 
     2     0    98     0 
     0     0     0   100 
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Matrix_of_confusion_union = Mc{2}{1} 
 
   100     0     0     0 
     1    96     0     3 
     0     0   100     0 
     0     0     0   100 
 

 As we can see in the first matrix, the second class is confused with the 
third (for 11 samples) and with the fourth (for 14 samples). The first is confused 
with the third (4 samples), and the fourth with the second (6 samples). We can 
see the confusions for the second group and the union of the outputs in the 
matrices Mc{1}{2} and Mc{2}{1}. 
  

 Thanks to the illustrations 5-2 and 5-3, we can see the 4 classes of 
polygons and the variation of the radius with the angle for each class. The 
illustrations 5-10 and 5-11 show how the different continuous HMMs interpret 
the variation of the radius. In particular, we can see in the two graphs of the 
most probable state sequence the differences between the HMM of the first 
class and of the fourth class. This example gives us a good clue to understand 
the process to classify a sample thanks to the technology of the continuous 
Hidden Markov Model. If we compare it with the discrete HMM, we see that the 
information is much more diffused in the case of the CHMM. With the illustration 
5-9, we can see the mixture of Gaussians every states of each CHMM. 

 

 
Illustration 5:9 Mixture of Gaussians from the CHMM of the class 1(cl1), group 
of parameter 2 (gr2) is plotted for the parameter 1 of this group (pr1) and for 
every states (state 1 to 12) of this HMM. 
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Illustration 5:10 For the first repetition of the first class, the most probable state 
sequence is plotted in the graph 1 and Alpha is calculated for the group 1 of the 
first CHMM. 

 

 
 

Illustration 5:11 For the first repetition of the first class, the most probable state 
sequence is plotted in the graph 1 and Alpha is calculated for the group 1 of the 
fourth CHMM. 
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5.3. Dhmm2chmm example 
 
 In this part, we can see how the CHMM is initialized thanks to the 

function “dhmm2chmm”. First, we generate four different classes of polygons in 
the function “prueba”. We extract the parameters (i.e. in this case the polar 
coordinate and the diff of the polar coordinate). Then, we split the database in 
the function “train” and call DHMM_DEF to initialize the DHMM with the 
parameters wanted. Then we optimize the DHMM with the function ”DHMM” as 
in the example “polygons: the DHMM example”. Please see the block diagram 
to understand how this example works: 
 

 
Illustration 5:12 Block diagram of the “dhmm2chmm” example. 
 

Moreover, this example plots different HMMs. The mixture of Gaussians 
is drawn for each state of each HMM and parameter. We compare the mixture 
of Gaussians with the probability distribution symbols for the DHMM. Thus, we 
can see how the CHMM is initialized thanks to the DHMM. Thanks to this 
example, we can see how the CHMM can be defined for a concrete application, 
what format we use to store the input parameters for the training and for the 
test. This example shows in particular the advantages of the “dhmm2chmm” 
function to initialize the CHMM. 
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 Prueba 

 
  First, this function creates 4 classes of different polygons. Then, thanks 
to the function “cart2pol”, it parameterizes the contour of the polygons in polar 
coordinate. The angle and the radius can be chosen as parameters inputs of 
the HMM. In our case, we added the diff of the radius and thus made two 
groups of parameters. The HMM inputs are stored in a cell. Then, this cell will 
be saved. 
 
 The database is created, and each parameter is stored in a structure 
array cell. We store the parameters as follow: 
vlcp{number of the class, number of the group}{number of the repetition} 
 
 Once we have calculated the radius and angle for the polygon, we can 
plot them thanks to the function “Pol2contourcont”. “Pol2contourcont” creates 
an image of the polygon. Putting a 1 in the “if” of the code source of the 
function, we can show the image created for each class and repetition (see 
illustration 5:2 and 5:3). We create 200 samples, 100 for the training and 100 for 
the test. If you want to change it, you can change the number of repetition “nr”. 
 
 The cell “vlcp” is then saved to be reloaded in the “train” function. 
The function “train” is called at the end of this function. 
 
 

 Pol2contourcont 
 
 This function creates the polygons as an image. If you want to plot it, you 
put a 1 in the “if” of the function “prueba” (see the code source of the function 
“prueba”). Thus, you obtain the images (see illustration 5:2 and 5:3). 
 
 

 train 
 
 Once, we have calculated the inputs, we define the DHMM thanks to the 
functions “train” and DHMM_DEF. The “train” function first loads the parameters 
and then splits the data base into the training set and the test set, and calls the 
DHMM_DEF function and then the DHMM function. The set of samples for the 
trainings and for the tests are taken at random for each class. The training set is 
saved in a cell format vtrain and the test in vtest. In this function, we also define 
the percentage for the training and for the test (percentage for the training is 
ptrain=50, and for the test, 100-ptrain). You can change it. Moreover, we print in 
the file prueba.txt the messages printed on the screen during the function 
“train”. Once we have calculated the DHMM, we use the function 
“dhmm2chmm” to generate the CHMM initialized with the parameters of the 
DHMM. 
 
 At the end, we call the function “resulhmm” to create the matrices of 
confusion for each group. 
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 Plot_CHMM  
 
 As you can see in the illustrations 5:13 to 5:14, this script plots mixture of 
Gaussians for each CHMM, repetition, class and groups of parameters. It also 
plots the distribution probability symbols for each DHMM. This function calls the 
function “plot_dis_symb” in order to plot the distribution probability symbols for 
each DHMM. 
 

 plot_dis_symb 
 
 This function only plots the probability distribution symbols for each 
parameter and states given a DHMM (a group, a class). 
 
Analysis of the example 

 
 The set up of the CHMM is made thanks to the functions “DHMM_DEF” 
(where we define the DHMM) and then thanks to the function “dhmm2chmm”. 
Please refer to the source codes of those two functions to see the set up made 
of the CHMM. In this example, we can see thanks to the illustrations 5:13 and 
5:14 how the mixture of Gaussians is set up with the probability distribution of 
the symbols. 
 
The results obtained with the DHMM are: 
RATE OF RECOGNITION BY GROUP 1: 98.25 
RATE OF RECOGNITION BY GROUP 2: 84.5 
RATE OF RECOGNITION BY GROUP 1  2: 97.5 
 
The results obtained with the CHMM (without the training) are: 
RATE OF RECOGNITION BY GROUP 1: 90.5 
RATE OF RECOGNITION BY GROUP 2: 72.75 
RATE OF RECOGNITION BY GROUP 1  2: 86 
 
We obtain those results thanks to the function CHMM without the training. To 
make that, we call the function: 
chmm('hmmpoligonos2.mat','','vtest'); 
 
As for the others examples, we can plot the matrices of confusion. Mc is the 
matrix for the DHMM. Mc2 is the matrix for the CHMM. 
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Illustration 5:13 Above is the mixture of Gaussians for the CHMM obtained 
thanks to the “dhmm2chmm” function for the class 1, group 2, parameter 1 and  
5 first states. Below is the probability of symbols for the DHMM for the class 1, 
group 2, parameter 1 and first five states. 

 
Illustration 5:14 Above is the mixture of Gaussians for the CHMM obtained 
thanks to the “dhmm2chmm” function for the class 1, group 2, parameter 1 and  
5 last states. Below is the probability of symbols for the DHMM for the class 1, 
group 2, parameter 1 and last five states. 
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7. Installation 
 

• The first step is to download the HMM toolbox from:  
http://www.gpds.ulpgc.es/download/index.htm  

 
• Then, extract the HMM toolbox in its own PC. The directories should be 

created as: 
 
..\hmm_toolbox\toolbox 
..\hmm_toolbox\examples 
..\hmm_toolbox\examples\dhmm 
..\hmm_toolbox\examples\chmm 
..\hmm_toolbox\examples\dhmm2chmm 
 
 

• Then download the netlab utility from  
http://www.ncrg.aston.ac.uk/netlab/ 
and install the files in ..\hmm_toolbox\toolbox\netlab. 

 
• Create the directory: 

c:\temphmm 
 

• Add the paths corresponding to the mentioned above directories. 
 

 
 


